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be.obtainedsimply by reading the extensive figure captions.Secondly, the main text
describes the principles in more detail, but without deriving the equations in detail.
Thirdly, the appendices contain detailed derivations and some necessary
mathematical background. It is stressed that only those readers who are specialising
in the subject would usually need to study the appendices in detail.

Within the main text, an essentially self-contained guide to the subject is presented.
That is, the reader is introduced to the mechanisms of crystal nucleation and growth
occurring at the atomic scale (chapter 2) before being shown how the form of an
initially planar solid/liquid interface evolves (chapter 3). Subsequently, the most
important single-phase (chapter 4) and multi-phase (chapter 5) solid/ liquid interface
morphologies are presented. Finally, the effect which solidification has upon the
redistribution of solute is discussed (chapter 6). One subject which is not covered in
detail is convection in the melt. To introduce this complex field properly would
require another book! However, the overall effect of the interaction of convection
and solidification is described where necessary.

Each chapter includes a bibliography of key references for further study, and
exercises which are designed to test the reader’s understanding of the contents of the
preceding chapter. For certain exercises, it is advisable firstly to work through the
corresponding appendices.

‘The authors hope that, after reading this book, the newcomer will feel confident
when delving further into solidification-related subjects, and that the experienced
foundryman will also find soime thought-provoking points.

W. Kurz, D.J. Fisher Lausanne,
April 1984
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SYMBOLS

Meaning

¥surface or cross-sectional area
gradient term

parameter in stability analysis
surface area of casting
constant

concentration

eutectic composition

length of eutectic tie-line
initial alloy concentration
diffusion coefficient in liquid
pre-exponential term (diffusion)
diffusion coefficient in solid
¥cncrgy

internal energy

exponential integral function
stability parameter

Gibbs free energy

interface temperature gradient
interface concentration gradient
enthalpy

nucleation rate

mass flux
*curvature

constant

length

atomic (molecular) weight
number

Avogadro’s number

pressure

series term for eutectic growth
solute Péclet number

thermal Péclet number
{activation energy for diffusion
quantity of heat

{gas constant

radius
fcntropy

perturbation term

stability parameter
temperature

cooling rate

melting point of pure substance
liquidus temperature

Definition

kVGc/(Vp - Db)
equation A6.13

equation A7.16
(€/€) {(mG¢/V)

dT/dz
dC/dz
equation 2.11
| /l“+];’r2

6.022 x 102
equation A9.30
VR /2D
VR/2a

8.31

€sin(wy)
equation A6.12

dT/dt
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Units
m?2

%/ m

m?2

ato%, wto
at%, wt%
at%, wto
at%, wt%
m2/s
m?/s
m?2/s

J

J/mol

K/m?
J/mol
K/m
at%/m, wt%/m
J/mol
/m3s
%m/s
/m

m
g/mol
/mol
Pa

J/mol

J

J/mol K
m
J/mol K



SYMBOLS (continued)

Symbol  Meaning

Tq measurable temperature

Tg solidus temperature

! non-equilibrium solidus
rate of interface movement
rate of crucible movement
mole fraction

partial solution to equation
partial solution to equation
thermal diffusivity
separation constant
half-axis of ellipsoid

N<xX<<

»
o

b ,half-axis of ellipsoid
(V/2D) + [(V/2D)? + w?]0'5

c volumetric specific heat
exponent

d distance

e exponent

f force

f[hkl1]} crystallographic factor

fe liquid fraction

fs solid fraction

f volume fraction of (-phase

h Planck’s constant
heat transfer coefficient

k distribution coefficient

kB Boltzmann's constant
liquidus slope

m mass
normal to isoconcentrates
number

n {exponent
interface normal

ng adsorption site density

o exponent
probability

p *complcmentary distribution coeff.

q heat flux

q' strength of heat source

r radius

r° critical nucleation radius

s position of s/l interface

Definition

equation A2.13
equation A2.10
K/c

equation A2.9

equation A2.38

equation A5.7
vy /(v + vg)
1-f,

6.63 x 107 >4
q/ ATy
GCs/C
1.38 x 10
dT,/dC

23

equation A4.9

1-k
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m/s
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W/m2K

J/K
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SYMBOLS (continued)

Meaning

solute capillarity length

thermal capillarity length

time

local solidification time
back-diffusion parameter
volume

atomic volume

molar volume

work

coordinate in s/I interface
coordinate in s/1 interface
coordinate perpendicular to a
planar solid/liquid interface
system coordinate
dimensionless entropy of fusion
dimensionless coefficient for
back-diffusion

dimensionless coefficient for
interdendritic back-diffusion
Gibbs-Thomson coefficient
solute boundary layer thickness
solute boundary layer thickness
in solid

thermal boundary layer thickness
concentration difference between
liquidus and solidus at solidus
temperature of alloy

total Gibbs free energy

activation free energy for diffusion

across solid /liquid interface
standard free energy

activation energy for the nucleation

of the critical cluster radius
activation energy for the
nucleation of a critical number
of clustered atoms

interface free energy

Gibbs free energy per mole

Gibbs free energy per unit volume

standard enthalpy
latent heat of fusion per mole
latent heat of fusion per volume

Definition
/mC*k - 1)
- Tel Ahg

(1-2a')

AS¢/R
Dgt¢/L2
equation 6.10
O'/ASf
2D/V

2Dg/V

2a/V

Col - Kk

-AGV/ Vm

AHg/vp,
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Units

Km
m

m
m

at%, wt%
J/mol

J/mol
J/ mol

J

J/mol
J/mol
J/m?
J/mol
J/mol
J/m?3



SYMBOLS (continued)

Symbol Meaning

AHV latent heat of vaporisation

As’ standard entropy

ASf entropy of fusion per mole

Asf entropy of fusion per volume

AT undercooling

AT' dendrite tip-to-root temperature
difference

ATg temperature drop across gap

AT, liquidus-solidus range at C,

ATr undercooling due to curvature

AT, temperature difference due to
solute diffusion

ATy temperature difference due to
heat flow

0% surface tension

€ amplitude of perturbation

é growth rate of amplitude

n ‘ dynamic viscosity
shape factor

0 angle

K thermal conductivity

A Iwave:length
spacing

u chemical potential

v adsorption frequency

Y atomic frequency

v kinematic viscosity

p density

o solid/liquid interface energy

b3 correction term for back-diffusion

r ! reduced temperature
relaxation time

¢ temperature gradient difference

i) reduced coordinate

Q dimensionless solutal
supersaturation

O’t dimensionless thermal
supersaturation

w wave number

Definition

-AHf;Tf
Ahg/Tg
Tp-T

equation Al.25
T, -Tg
equation A3.20

de/dt

equation A4.2

equation A4.8

equation All.17
RT/AHy
equation A11.33
ch -G
equation Al.11

equation A7.1

equation A7.5
2w/A
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J/mol K
J/mol K
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W/Km

J/mol
/s

/s
m?/s
kg/m?
J/m2



SYMBOLS (continued)

Superscripts: Subscripts:
m -maximum value ¢ -solutal
°  _critical activation value t -liquid or liquidus
* _interface or tip value m -minimum value
- -value for pure substance s -solid or solidus
t -thermal
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CHAPTER ONE

INTRODUCTION
1.1 The Importance of Solidification

Solidification is a phase transformation which is familiar to everyone, even if the
only acquaintance with it involves the making of ice cubes. It is relatively little
appreciated that the manufacture of almost every man-made object involves
solidification at some stage.

The scope of this book is restricted mainly to a presentation of the theory of
solidification as it applies to the most widely-used group of materials, i.e. metallic
alloys. Here, solidification is generally accompanied by the formation of crystals; an

event which is much rarer during the solidification of glasses or polymers.
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Solidificatic s> of such importance simply because one of its major practical
applications, namely casting, is a very economic method of forming a component if
the melting point of the metal is not too high. Nowadays, cast metal products can be
economically produced from alloys having melting points as high as 1660°C (Ti).

In the case of metals, melting is accompanied by an enormous decrease in viscosity,
of some twenty orders of magnitude, as illustrated in figure l1.1. Thus, instead of
expending energy against the typically high flow stress of a solid metal during forging
or similar processes, it is only necessary to contend with the essentially zero shear

stress of a liquid. If the properties of castings were easier to control, then

102°

1075~

10'°}

N{(Pa.s)

10°

1(poise)

10'5 s \ \ L 10-®
o} 10 20 30 40 50
1/t

Figure 1.1: DY NAMIC VISCOSITY AS A FUNCTION OF TEMPERATURE. The
fundanental advantage of solidification, as a forming operation, is that it permits
metal to be shaped with a minimum of effort since the liquid metal offers very
little resistance to shear stresses. When the material solidifies due to a decrease
in the temperature, 7, its viscosity increases continuously (glass formation) or
discontinuously (crystallisation), by over 20 orders of magnitude, to yield a strong
solid, the viscosity of which is defined arbitrarily to be greater than 1014pas.
(The reduced temperature, 7, is used here since it leads to a single curve which is
applicable to many substances. The suffix, f or v, indicates the melting point or
boiling point, respectively.) [D.Turnbull: Transactions of the Metallurgical Society
of AIME 221 (1961) 422]

www.iran-mavad.com
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solidification would be an even more important process. In this respect, solidification
theory plays a vital role since it forms the basis for influencing the microstructire
and hence improving the quality of cast products.

The effect of solidification is most evident when casting is the final operation since
the resultant properties can depend markedly upon the position in the casting
(figure 1.2). 1ts influence is also seen in a finished product, even after heavy working,
since a solidification structure and its associated defects are difficult to eliminate

once they are created. Solidification defects tend to persist throughout subsequent

400 112
TN
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2 200} S« o
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[} 50 100 150
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Figure 1.22 ALLOY PROPERTIES AS A FUNCTION OF POSITION IN A
CASTING. The use of casting as a production route unfortunately poses its own
problems. One of these is the local variation of the microstructure, leading to
compositional variations, and this is illustrated for example by the dendrite arm
spacing, Ag, measured as a function of the distance, d, from the surface of the
casting. This can lead to a resultant variation in properties such as the ultimate
tensile strength and the elongation. Like the weakest link in a chain, the inferior
regions of a casting may impair the integrity of the whole. Thus, it is important to
understand the factors which influence the microstructure. Finer microstructures
generally have superior mechanical properties and finer structures, in turn,
generally result from higher solidification rates. Such rates are found at small
distances from the surface of the mould, in thin sections, or on remelted surfaces.
[M.C.Flemings: Solidification Processing, McGraw-Hill, New York, 1974]
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operations ' e 1.3). Good control of the solidification process at the outset is

therefore of utmost importance.
Some important processes which involve solidification are:

Casting: continuous-
ingot-
form-
precision-
die-

Welding: arc-
resistance-
plasma-

electron beam-
laser-
friction~ (including the

micro-mechanisms of wear)

Soldering/Brazing

Rapid Solidification Processing: melt-spinning
planar-flow casting

atomisation
surface remelting

Directional Solidification: Bridgman

liquid metal cooling

Czochralski
electroslag remelting

In addition, the crystallisation of certain pure substances is of great importance. For
example, the preparation of semiconductor-grade silicon crystals is an essential step
in modern solid-state physies and technology. The production of integrated cirecuits,
the basis of any new electronic device (radio, wateh, computer, ete), requires the
preparation of large single crystals of very high perfection, containing a controlled
amount of a uniformly distributed dopant. At the moment, such a crystal can only be
produced by growth from the melt. Indeed, the requirements of semiconductor
physics have enormously influenced solidification theory and practice. Therefore,
during the past 30 years solidification has evolved from being a purely technological,
empirical field, to become a science.
Www.iranggnavad.com
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Figure 1.3: EFFECT OF DEFORMATION UPON A CAST MICROSTRUCTURE.
Often, casting is not the final forming operation. However, subsequent
deformation is not a very efficient method of modifying the as-cast
microstructure since any initial heterogeneity exhibits a strong tendency to
persist. Thus, during the rolling of this L-shaped profile which contains a heavily
segregated central region, the latter defect survives the many stages between the
cast billet and the final product. This example emphasises the fact that any
effective control of product quality must be exercised during solidification.
{A.J.Pokorny, De Ferri Metallographia, Vol.Ill, Luxembourg, 1966, p287]

Historically, simple cast objects (in copper) first appeared before about 4000BC and
were, no doubt, a natural by-product of the potter's skill in handling the clay used in
mould-making. The production of the renowned and highly sophisticated bronze
castings of China began in about 1600BC. However, it is probable that the technique
had originally been imported from elsewhere. For instance, the lost-wax process was
developed in Mesopotamia as long ago as 3000BC. lron-casting in China began in
about 500BC, but in Europe it did not appear until the 16thcentury, and achieved
acceptance as a constructional material, in England in the 18thcentury, only under
the impetus of the industrial revolution.

Much of the delay in exploiting cast materials probably originated from the complete
lack of understanding of the nature of solidification phenomena and of the
microstructures produced. In particular, the facets of fracture surfaces were
invariably taken to indicate the nature of the ‘crystals' of which a casting was
composed. In the absence of an adequate picture of the solidification process, casting
was bound to remain a black art rather than a science, and vestiges of this attitude

still remain today.

www.iran-mavad.com
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1.2 Heat Extraction

The various solidification processes mentioned above involve extraction of heat from
the melt in a more or less controlled manner. Heat extraction changes the energy of

the phases (solid and liquid) in two ways:

1 - There is a decrease in the enthalpy of the liquid or solid,
due to cooling, which is given by:
AH = {cdT

2 - There is a decrease in enthalpy, due to the transformation
from liquid to solid, which is equal to the latent heat of
fusion, AHr; defined to be negative for the

liquid-to-solid transformation (exothermic reaction)

Heat extraction is achieved by applying a suitable means of cooling to the melt in
order to create an external heat flux, Qe The resultant cooling rate, dT/dt, can be
deduced from a simple heat balance if the metal is isothermal (low cooling rate) and
the specific heats of the liquid and the solid are the same. Using the latent heat per
unit volume, Ahg = AHg/v, in order to conform with the dimensions of the

other factors, then:

Ay - _oGTy_ A dfg
qe(v ) c(dt) hf(dt )
so that:

T2 90 oo god) - Ghs) (A 1.1]
The first term on the right-hand-side (RHS) of equation 1.1 reflects the effect of
casting geometry (ratio of surface area of the casting, A', to its volume, v) upon the
extraction of sensible heat, while the second term takes account of the continuing
evolution of latent heat of fusion during solidification. It can be seen from this
equation that, during solidification, heating will occur if the second term on the RHS
of equation 1.1 becomes greater than the first one (Ahf<0). This phenomenon is
known as recalescence. For an alloy, where solidification occurs over a range of

temperatures, the variation of the fraction of solid as a function of time must be

calculated from the relationship:
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g_fs = (4T dfy)
t atar

since fs is a function of temperature. In this case:
A!
ge { vc)

T = _ Ve [1.2])
Ahfy | df,
1+ (—c ) (?I“S)

It is seen that solidification decreases the cooling rate since both df /dT and Ahp
s

are negative.

insulation

cooler

chill

Figure 1.4: BASIC METHODS OF CONTROLLED SOLIDIFICATION. Without heat
extraction there is no solidification. The liquid must be cooled to the
solidification temperature and then the latent heat of solidification appearing at
the growing solid/liquid interface must be extracted. There are several methods
of heat extraction. In directional (Bridgman-type) solidification (a): the crucible is
drawn downwards through a constant temperature gradient, G, at a uniform rate,
V!, and therefore the microstructure is highly uniform throughout the specimen.
The method is restricted to small specimen diameters and is expensive because it
is slow and, paradoxically, heat must be supplied during solidification in order to
maintain the imposed positive temperature gradient. For these reasons, it is
employed only for research purposes and for the growth of single erystals. In
directional casting (b), the benefits of directionality, such as a better control of
the properties and an absence of detrimental macrosegregation, are retained but
the microstructure is no longer uniform along the specimen because the growth
rate, V, and the temperature gradient decrease as the distance from the chill
increases. The process is cheaper than that of a) and is used for the directional
solidification of gas-turbine blades, for example.
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Figure 1.4 ilworates two fundamentally different solidification processes. In
figure 1.4a, the heat is extracted in an almost steady manner by moving the crucible
at a fixed rate, V', through the temperature profile imposed by the furnace. Such a
process is usually used for single crystal growth or directional solidification. It
permits the growth rate of the solid, V (which is not necessarily equal to the rate of
crucible movement - see exercise 1.9), and the temperature gradient, G, to be
separately controlled. If V' is not too high, both the solidification and the heat flux

are unidirectional. Therefore, the cooling rate is related to the other constants by:

P= @0 Ep=ov
where s=2'-z.

Another directional casting process is illustrated by figure 1.4b. Here, heat is
extracted via a chill and, as in figure l.4a, growth occurs in a direction which is
parallel, and opposite, to the heat-flux direction. In this situation, the heat-flux
decreases with time as do the coupled parameters, G and V. Thus T also varies. Heat
flow in the mould/metal system leads to an expression for the position, s, of the

solid/liquid interface, which is of the type (appendix 1):
s = Kt [1.3]

This equation is exact only if the melt is not superheated, if the solid/liquid interface
is planar, and if the surface temperature of the casting at the chill drops
immediately, at t =0, to a constant value. Upon turning figure 1.4b through 90°, it can
be regarded as being a volume element in a conventional casting (figure 1.5). The
difference between the figures is the presence of a dendritic morphology at the
solid/liquid interface shown schematically in figure 1.5. This morphology depends
(chapter 4) upon the alloy composition, and upon G and V. If it is assumed, for
simplicity, that the dendrites can be represented by plates(§), then solidification
on a microscopic scale again takes place directionally (perpendicular to the primary

growth axis of the dendrites, as shown in the upper inset of figurel.5). This

representation permits a simple estimation of interdendritic microsegregation

(chapter 6)-

§ Plate-like primary crystal morphologies are often observed
during solid-state precipitation. When metallic primary crystals
grow into a melt, they are always rod-like rather than
plate-like in form and possess many branches leading to the
characteristic dendrite form.
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1.3 Solidification Microstructures

In an ingot or casting, three zones of solidification behaviour can generally be
distinguished (figure 1.6). At the mould/metal interface, the cooling rate is at its

mushy 2zone

vol. ¢l¢ﬂ'\¢nl’
mushy zone

volume element
of casting

columnar
zone

mould

casting

Figure 1.5: SOLIDIFICATION IN CONVENTIONAL CASTINGS AND INGOTS. In
the vast majority of castings, no directionality is imposed upon the overall
structure, but the local situation can be seen to be equivalent to that occurring in
directional casting (figure 1.4b). This is true of the way in which the solid
advances inward from the mould wall to form a columnar zone. During the growth
of the columnar zone, three regions can be distinguished. These are the liquid, the
liquid plus solid (so-called mushy zone), and the solid regions. The mushy zone is
the region where all of the microstructural characteristics are determined, e.g.
the density, shape, size, and distribution of concentration variations, precipitates,
and pores. An infinitesimally narrow volume element which is fixed in the mushy
zone and is perpendicular to the overall growth direction permits the description
of the microscopic solidification process and therefore of the scale and
composition of the microstructure.
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highest due tc initially low relative temperature of the mould. Consequently,
many small grains having random orientations, are nucleated at the mould surface
and an 'outer equiaxed' zone is formed. These grains rapidly become dendritic, and
develop arms which grow along preferred crystallographic directions ( {(001) in the
case of cubic crystals). Competitive growth between the randomly oriented outer
equiaxed grains causes those which have a preferred growth direction aligned parallel
and opposite to the direction to eliminate the others. This is because their higher
growth rate allows them to dominate the solid/liquid interface morphology, thus

leading to the formation of the characteristic columnar zone. It is often observed

equiaxed zone

inner

\

=

S

23

SO

o0

®

columnar 2zone

Figure 1.6: STRUCTURAL ZONE FORMATION IN CASTINGS. Firstly, solid
nuclei appear at, or close to, the mould wall. For a short time, they increase in
size and form the outer equiaxed zone. Then, those crystals (dendrites) which can
grow parallel and opposite to the heat flow direction will advance most rapidly.
Other orientations tend to be overgrown, due to mutual competition, leading to
the formation of a columnar zone (a). Beyond a certain stage in the development
of the columnar dendrites, branches which become detached from the latter can
grow independently. These tend to take up an equiaxed shape because their latent
heat is extracted radially through the undercooled melt. The solidified region
containing them is called the inner equiaxed zone (b). The transition from
columnar to equiaxed growth is very dependent upon the degree of convection in
the liquid. In continuous casting machines, electromagnetic stirring is often used
to promote this transition and lead to superior soundness at the ingot centre.
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that another equiaxed zone forms in the centre of the casting, mainly as a result of
the growth of detached dendrite arms in the remaining, slightly-undercooled liquid.

Figure 1.7 shows the temperature fields of the various cast structures which one
might encounter. These are planar interface (columnar grains - a) or thermal
dendrites (equiaxed grains - b) in pure materials, and solutal (constitutional) dendrites
in alloys (e,d). 1t can be seen that columnar grains must always grow out from the

mould (which is the heat sink) in a direction which is opposite to that of the heat

Figure 1.7: SOLID/LIQUID INTERFACE MORPHOLOGY AND TEMPERATURE
DISTRIBUTION. In the case of a pure metal(a,b) which is solidifying inwards from
the mould wall, the columnar grains (a) possess an essentially planar interface, and
grow in a direction which is antiparallel to that of the heat flow. Within the
equiaxed region of pure cast metal (b}, the crystals are dendritic and grow radially
in the same direction as the heat flow. When alloying elements or impurities are
present, the morphology of the columnar crystals(c) is generally dendritic. The
equiaxed morphology in alloys (d) is almost indistinguishable from that in pure
metals, although a difference may exist in the relative scale of the dendrites. This
is because the growth in pure metals is heat-flow-controlled, while the growth in
alloys is mainly solute-diffusion-controlled. Note that in columnar growth the
hottest part of the system is the melt, while in equiaxed solidification the crystals
are the hottest part. It follows that the melt must always be cooled to below the
melting point (i.e. undercooled) before equiaxed crystals can grow.
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flow, while equ._..ed grains grow in a supercooled melt which acts as their heat sink.
Thus, the growth direction and the heat flow direction are the same in equiaxed
growth.

The form of a solidification microstructure depends not only upon the cooling
conditions, but also upon the alloy composition (figure 1.8). There are essentially two
basic growth morphologies which can exist during alloy solidification. These are the
dendritic and eutectic morphologies (peritectic alloys grow in a dendritic form).
Generally, a mixture of both morphologies will be present. It is reassuring, in the face
of the apparent microstructural complexity, to remember that it is only necessary to
understand these two growth forms in order to interpret the solidification

microstructure of almost any alloy.

C(wt%Cu)

Figure 1.8: PRINCIPAL ALLOY TYPES. It is important to understand how the
various microstructures are influenced by the alloy composition and by the
solidification conditions. Fortunately, this can usually be reduced to the study of
two basic morphological forms: dendritic and eutectic. Thus, one can distinguish:
a) pure substances, which solidify in a planar or dendritic manner, b)solid-solution
dendrites (with or without interdendritic precipitates), c)dendrites plus
interdendritic eutectic, and d)eutectic. The latter group includes the familiar
‘cast iron' and 'plumber's solder' type of alloy. In general, the design of casting
alloys is governed by the twin aims of obtaining the required properties and good
castability (i.e. easy mould filling, low shrinkage, small hot tearing tendency,
ete.). Castability is greatest for pure metals and alloys of eutectic composition.
The diagram represents the Al-Cu system between Al and the intermetallic
(theta) phase, AlaCu.
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Figure 1.9 illustrates the various stages of equiaxed solidification - fron. ..ucleus to
grain - for the two major growth morphologies: dendrites and eutectic. Each grain has
one nucleus at its origin. (In the literature of cast iron, an eutectic grain is often
called an eutectic cell. This definition will not be adopted because the term, cell, is
here reserved for another morphology.)

The transformation of liquid into solid involves the creation of curved solid/liquid
interfaces (leading to capillarity effects) and to the microscopic flow of heat, and

also of solute in the case of alloys.

1.4 Capillarity Effects

With any solid/liquid interface of area, A, is associated an excess (interface) energy
which is required for its creation. Therefore, heterogeneous systems or parts of
systems which possess & high A/vratio will be in a state of higher energy and
therefore unstable with respect to a system of lower A/vratio. The relative stability
can be expressed by the equilibrium temperature between both phases (melting point).
As shown in appendix 3, the change in melting point due to this curvature effect,
often called the curvature or Gibbs-Thomson undercooling, is given by:

AT, = 'k 1.4}

Note that the curvature, K, and the Gibbs-Thomson coefficient, F, are here defined
so that a positive undercooling (decrease in equilibrium melting point) is associated
with a portion of solid/liquid interface which is convex towards the liquid phase. The
curvature can be expressed as (appendix 3):

k=9A-1,1 (1.5)
r r

1 2

0.|0.
<>

where ry and ry are the principal radii of curvature (§). Thus, the total curvature
of a sphere is 2/r and that of a eylindrical surface is 1/r. The Gibbs-Thomson

§ The two principal radii of curvature are the minimum and
maximum vaiues for a given surface. 1t can be shown that they
are always perpendicular to each other.
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Figure 1.9: PROCESS OF EQUIAXED SOLIDIFICATION OF DENDRITES AND
EUTECTIC. In each case, single-phase nuclei form initially. In pure metals or
single-phase alloys (a), the nuclei then grow into spherical crystals which rapidly
become unstable and dendritic in form. These dendrites grow freely in the melt
and finally impinge on one another. In a pure metal after solidification, no trace
of the dendrites themselves will remain, although their points of impingement will
be visible as the grain boundaries. In an alloy, the dendrites will remain visible
after etching due to local composition differences (microsegregation). In an
eutectic alloy (b), a second phase will soon nucleate on the initial, single-phase
nucleus. The eutectic grains then continue to grow in an essentially spherical
form. In a casting, both growth forms, dendritic and eutectic, often develop
together. Note that each grain originates from a single nucleus.
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Figurel.10: #THE SCALE OF VARIOUS SOLID/LIQUID INTERFACE
MORPHOLOGIES. Solidification morphologies are determined by the interplay of
two effects acting at the solid/liquid interface. These are the diffusion of solute
(or heat), which tends to minimise the scale of the morphology (maximise
curvature), and capillarity effects which tend to maximise the scale. The crystal
morphologies actually observed are thus a compromise between these two
tendencies, and this can be shown with respect to nucleation (a), interface
instability (b), dendritic growth (c), and eutectic growth (d).

coefficient is given by:
_ [
I'= ast [1.6]
For most metals, ['is of the order of 10_7Km. Hence, the effect of the solid/liquid
interface energy, 0, only becomes important for morphologies which have a radius
which is less than about 10um. These include nuclei, Interface perturbations,

dendrites, and eutectic phases (figure 1.10).

1.5 Solute Redistribution

The creation of a crystal from an alloy melt causes a local change in the composition.

This is due to the equilibrium condition for a binary system containing two phases:
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{appendix 3). The difference in composition at the growing interface, assuming that
local (i.e. at the interface) equilibrium exists in metals, can be described by the

distribution coefficient under isothermal and isobaric conditions (figure 1.11):

K :(gf) T,p {1.8]

In most of the theoretical treatments to be presented later, the solidus and liquidus

lines will be assumed to be straight. This means that k and m are then constant. This

Ty

Co Co/k

Figure 1.11: SOLID/LIQUID EQUILIBRIUM. In order to simplify the mathematical
treatment of solidification processes, it is generally assumed that the liquidus and
solidus lines of the phase diagram are straight, and therefore that the distribution
coefficient, k, and the liquidus slope, m, are constant. The characteristic
properties of the system are defined in the text (equations 1.8 to 1.10).
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violates the condition for thermodynamic equilibrium (equation 1.7) but ¢..en makes
theoretical analyses more tractable without seriously affecting the conclusions.
Throughout this book, m is defined so that the product, (k-1)m, is positive. That is, m
is defined to be positive when k is greater than unity, and to be negative when k is
less than unity. Two other important parameters of an alloy system are shown in
figure 1.11. These are the liquidus-solidus temperature interval for an alloy of
composition, CO:

ATO =-maAC, = (TL - TS) [1.9]

and the concentration difference between the liquid and solid solute contents at the

solidus temperature of the alloy:
ACy = go(_‘l("_k) f1.10]

In later chapters it will be shown how these parameters influence the solidification
microstructure. Meanwhile, the starting point of solidification (nucleation) will be
considered briefly, and a look will be taken at the mechanisms by which atoms in the

melt become part of the growing crystal.
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EXERCISES

Discuss the shape of the upper surface of the ingot in figure 1.6. What would
happen if the solidifying material was one of the following substances: water,

Ge, Si, Bi7

From a consideration of the volume element in the mushy zone of figure 1.5
(upper part), define the local solidification time, tp in terms of the
dendrite growth rate, V, and the length, 8, of the mushy zone.

Sketch 7-7 diagrams for the crystallisation of a pure metal and for an alloy,

and comment on their significance in each case.
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1.5 -

1.6 -

1.8 -

Equiaxed dendrites develop freely in an undercooled melt. 1 ..cuss the
direction of movement of the equiaxed dendrites in a quiescent melt. Where
would most of them be found in solidifying melts of a)steel, b) Bi?

Sketch two different phase diagrams having a positive and a negative value of

m. Show that the product, m(k-1), is always positive.

Using data from "Constitution of Binary Alloys" (M.Hansen and K.Anderko,
MeGraw-Hill, New York, 1958) or a similar compilation, estimate the
distribution coefficient, k, of S in Fe at temperatures between 1530 and
900°C, and of Cu in Ni at temperatures between 1400 and 1300°C. Discuss

the validity of the assumption that k is constant in these systems.

A molten alloy, like any liquid which exhibits local density variations, will be
subject to movements known as natural convection. What is the origin of this
convection in a)a pure metal, b)an alloy? Discuss your conclusions with
regard to various alternative solidification processes such as upward (as
opposed to downward) directional solidification (Bridgman - figure 1.4), and

casting (figure 1.5).

Give possible reasons for the good mould-filling characteristics which are
exhibited by pure metals and eutectic alloys during the casting of small
sections. Discuss them with regard to the interface morphology shown in

figure 1.7.

Figure 1.4 illustrates two directional solidification processes which differ
with respect to their heat transfer characteristics. In one case, a
steady-state behaviour is established after some transient changes. In the
other case, changes continue to occur with the passage of time. One process
is not limited with regard to the length of the product, but is limited by its
diameter. The other process is not affected by the diameter, but rather by
the specimen length. Sketch heat flux lines, and T, G, and V values as a
function of z' for various times and discuss the above facts in the light of the
sketches. Note that, in directional solidification, the temperature gradient at
the solid/liquid interface in the liquid must always be positive, as shown in

figure 1.7a,c.
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1.10 - Illustrate the changes in the temperature distribution of a casting as a
function of time between the moment of pouring of a pure, superheated melt
and the establishment of the situation shown in figure 1.7a and b. Discuss the

fundamental differences between a and b.
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CHAPTER TWO

ATOM TRANSFER AT THE SOLID/LIQUID
INTERFACE

From a thermodynamie point of view, solidification requires an outflow of heat which
changes the free energies, and therefore the relative thermodynamic stability, of the
phases present. From the same point of view, thermodynamically stable phases are
more likely to be observed, but the transformation of one phase into another requires
rearrangement of the atoms. This may involve a relatively short-range (atomic)
rearrangement to form a new crystal structure, as in the case of a pure substance.
Alternatively, atomic movement may be required over much larger, but still
microscopic, distances as in the case of alloy solidification where mass diffusion
controls the transformation. Because of these atomic movements, solidification can
never be an equilibrium process and some irreversible departure from equilibrium is
always required to drive the process.
Www.iranAeravad.com
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Like a chemical reaction, phase transformations are driven by thermal fluctuations
and can only o¢ ~hen the probability of transfer of atoms from the parent phase
to the product phase is higher than that for the opposite direction. However, even
before this stage is reached, it is necessary that some of the new phase, to which
atoms of the parent phase can jump, should already exist. Therefore, stable regions of
the new phase have to form. In solid metals, random fluctuations may create minute
crystalline regions (clusters, embryoes) even at temperatures greater than the
melting point, but these will not be stable. Indeed, they continue to be unstable to
solile temperature below the melting point because the relatively large excess energy
required for surface creation tends to weight the 'energy balance' against their
survival when they are small.

Once nucleation has occurred, atom transfer to the crystals has to eontinue in order
to ensure their growth. The mechanisms involved during this second stage are

discussed in section 2.3.

2.1 Conditions for Nucleation

It is inherently difficult to observe the process of nucleation because it involves such
small clusters of atoms. Consequently, only extremely careful comparison of
theoretical models and experimental resuits can clarify the very first stages of
solidification. As demonstrated in figure 2.1, for the case of a hypothetical metal,
nucleation begins at some degree of undercooling, AT = A’I‘n(§), which is generally
very small in practical situations. The initially small number of grains which begin to
grow does not appreciably modify the cooling rate imposed by the external heat flux,
Qe Increasing the undercooling has the effect of markedly increasing the
nucleation rate, 1, and also the growth rate, V. The solidification rate approaches a
maximum vaiue when the internal heat flux (qi), which is proportional to the latent
heat of fusion and the volume rate of transformation, fs(:dfs/dt), is equal to the

external one (qe) (equation 1.1). Here, T=0. During the first stage of equiaxed

§ The undercooling, AT, is usually defined as the temperature
difference between the equilibrium temperature of a system
and its actual temperature. The latter is lower than the
equilibrium temperature when the melt is undercooled. In this
case, AT is greater than zero. The term, supercooling, is often
used interchangeably with undercooiing in the literature.
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Figure 2.1: THERMAL HISTORY OF EQUIAXED DENDRITIC SOLIDIFICATION.
The above temperature-tiine curve is one which might well be obtained during a
solidification sequence such as that pictured in figure 1.9a. The usual cooling
curve (a) begins to deviate slightly at the undercooling where nucleation occurs,
ATp. At this point, the first fraction of solid, fs, appears(d). With further
cooling, the nucleation rate, I, rapidly increases to a maximum value (e) which
corresponds to a minimum in the temperature/time curve (a). At this point, the
growth rate, V, of the grains (i.e. of the dendrite tips) is at its highest. The
subsequent increase in temperature is due to the high internal heat flux, q;,
arising from the rate of transformation, fg (=dfg/dt), and the latent heat
released (c). Note that 1 is much more sensitive to temperature changes than is V
(e). The final solidification which takes place after impingement of the grains
involves dendrite arm coarsening at a tip growth rate, V, equal to zero. During
this time interval, the number of grains, N, remains constant.
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solidification, . is essentially nucleation-controlled, the volume fraction of solid
is still very small. After some time, the temperature of the system has risen above
the nucleation temperature and the second stage of solidification is
growth—controlled. The number of grains present thus remains essentially constant
and solidification proceeds via the lengthening of dendrites, and dendrite arm
thickening.

From this sort of consideration, it is possible to deduce that nucleation is the
dominant process at the beginning of solidification and leads very rapidly to the
establishment of the final grain population, with each nucleus forming one equiaxed
grain of the type shown in figure 1.9b ord. Note that even in the case of columnar
solidification, the very first solid in a casting always appears in the form of equiaxed
grains (figure 1.6). The conditions leading to nucleation are therefore of utmost

importance in determining the characteristics of any cast microstructure.

In phase changes such as solidification, which are discontinuous, the transformation
process cannot ocehr at any arbitrarily small undercooling. The reason for this arises
froim the large curvature associated with a crystal of atomic dimensions. This
curvature markedly lowers the equilibrium temperature (appendix 3) so that, the
smaller the crystal, the lower is its melting point. This occurs because the small
radius of curvature creates a pressure difference between the two phases which is of
the order of 100MPa (lkbar) for a crystal radius of Inm. The equilibrium melting
point of the system is thus lowered by an amount, ATr’ The critical size, r? of a
cerystal, i.e. the size which allows equilibrium between the curved ecrystal and its

melt, can be calculated. For a sphere (appendix 3) this is:

ar,=TK= 2{_——{1
and
o - 2" _ 20
r AT, AT.a5 [2.1]

This relationship indicates that, the smaller the difference (undercooling) between
the melting point and the temperature of the melt, the larger will be the size of the
equilibriunm erystal. For nucleation of a spherical erystal of radius, r, to occur, a

number of atoms, each of volume, v, given by:

. ardm
= S5 [2.2]

have to arrange themselves on the sites of the corresponding solid crystal lattice. 1t
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is evident that the probability of this event occurring is very small for larg ues of
r°, i.e. at small undercoolings (equation 2.1).
As shown in figure 2.2, the critical condition for nucleation is derived by summing the

interface and volume terms for the Gibbs free energy:
AG = AG; + AG_= OA + Ag.v [2.3]

where O is the solid/liquid interface energy and Ag is the Gibbs free energy
difference between the liquid and solid per unit volume. Again assuming a spherical

form (minimum A/v ratio) for the nucleus,
AG = 0472 + Ag:;’lr-‘"-a [2.4]
The Gibbs free energy per unit volume, Ag, is proportional to AT (appendix 3):
Ag = Asp AT {2.5]

The right-hand-side of equation 2.4 is composed of a quadratic and a cubic term. The
value of O is always positive whereas Ag depends upon AT, and is negative if AT is
positive. This behaviour leads to the occurrence of a maximum in the value of AG
when the melt is undercooled, i.e. when AT is positive (figure 2.2c). This maximum
can be regarded as being the activation energy which has to be overcome in order to

form a crystal nucleus which will continue to grow. The maximum value is given by:

d(aG) .
5 =0 [2.6]

and can be regarded as being a condition for equilibrium between liquid, and solid
having a curvature such that the driving force for solidification is equal to that for
melting. Consequently, it is not surprising that setting the first derivative of
equation 2.4 equal to zero should lead to equation 2.1.

Figure 2.2d demonstrates how fluctuations in a melt, corresponding to the conditions
of figure 2.2¢, will behave. At least one cluster which is as large as the critical
nucleus (of radius, r°) must be formed before solidification ean begin. The time which

elapses before this occurs will be different (tl, t_, .. at different locations in

2
the melt. In this case, fluctuations spontaneously create a small crystalline volume in
an otherwise homogeneous melt (containing no solid phase). This is referred to as

homogeneous nucleation because the occurrence of nucleation transforms an initially

homogeneous system (consisting only of atoms in the liquid state) into a

heterogeneous system (crystals plus liquid). Using equations2.2 to 2.6, the critical
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Figure 2.2 FREE ENERGY OF A CRYSTAL-LIKE CLUSTER AS A FUNCTION
OF ITS RADIUS. The process of nucleation of a crystal from its melt depends
mainly on two processes: thermal fluctuations which lead to the creation of
variously sized crystal embryoes (clusters), and creation of an interface between
the liquid and the solid. The free energy change, AG,, which is associated with
the first process is proportional to the volume transformed. That is, it is
proportional to the cube power of the cluster radius. The free energy change,
AG;, which is associated with the second process is proportional to the area of
solid/liquid interface formed. That is, it is proportional to the square of the
cluster radius. At temperatures, T, greater than the melting point (a), both the
voluine free energy (AG,) and the surface free energy (AGj) increase
monotonically with increasing radius, r. Therefore, the total free energy, AG,
which is their sum, also increases monotonically. At the melting point (b), the
value of AG; still increases monotonically since it is only slightly temperature
dependent. Because, by definition, thermodynamic equilibrium exists between the
solid and liquid at the melting point, the value of AG, is zero. Hence AG again
increases monotonically with increasing radius. At a temperature below the
equilibrium melting point (e), the sign of AG, is reversed because the liquid is
now unstable, while the behaviour of AGj is still the same as in (a) and (b).
However, AG, has a 3rdpower dependence on the radius while AGj has only a
2nd power dependence. Thus, at small values of the radius, the absolute value of
AG, is less than that of AGj, while at large velues of r the cubic dependence
of AG, predominates. The value of AG therefore passcs through a maximum at
a critical radius, r°. Fluctuations may move the cluster backwards and forwards
along the AG-r curve (e) due to the effect of random additions or removals of
atoms to or from the unstable nucleus. When a fluctuation causes the cluster to
become larger than r°, growth will occur due to the resultant decrease in the total
free energy. Thus, an embryo or cluster (r<r°) becomes a nucleus (r=r°) and

eventually leads to the formation of ar%raln (r>
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parameters can be calculated and are given in table 2.1 where AGn is equ .ent to
AG in equation 2.3, except that n (the number of atoms in the nucleus, equation 2.2)
rather than the radius, r, has been used to describe the nucleus size.

As an example, suppose that an undercooling of 230K is required to cause nucleation
in small Cudroplets. From this value and the properties of the metal it is estimated
that r°=lnm and n°=360.

When the melt contains solid particles, or is in contact with a crystalline crucible or
oxide layer, nucleation may be facilitated if the number of atoms, or activation
energy required for nucleation, are decreased. This is known as heterogeneous
nucleation. A purely geometrical calculation shows that when the solid/liquid
interface of the substance is partly replaced by an area of low-energy solid/solid
interface between the crystal and a foreign solid, nucleation can be greatly
facilitated. The magnitude of the effect can be calculated using the result derived in

appendix 3:

(2 + cos0)(1 - cosf)?
1

£(o) = 2.7

where @ is the wetting angle, in the presence of the melt, between a growing
spherical cap of solid (nuclcus) and a solid substrate (particle or mould wall). The n®
and AG ° values are decreased by small values of 0 but the r° value is not.

Numerical values of (@), given by equation 2.7, are listed in table 2.2, and show that,
under conditions of good solid/solid wetting (small 0) between the crystal nucleus and
the foreign substrate in the melt, a large decrease in n® and AG° can be expected.

Table 2.1: CRITICAL DIMENSIONS AND ACTIVATION ENERGY FOR THE
NUCLEATION OF A SPHERICAL NUCLEUS IN A PURE MELT (Ag = Asf AT)

Homogeneous Nucleation Heterogeneous Nucleation

critical dimension

. 20 20

r Ag Ag

3 3
ne (327) (9 (327 (2_y1(0)
3v Ag 3v! Ag
activation energy 3 3
16, O
AGpe AT (L)) (3 (552 16)
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Table 2.2 VALUES OF THE EXPRESSION:
((0) = (1/4)X2 + cos 0)(1 - cos §)>

6(°) Type of Nucleation (9)
0 complete wetting no nucleation barrier (§) 0
10 0.00017
20 0.0027
30 0.013
40 0.038
50 0.084
70 heterogeneous 0.25
90 0.5
f10 0.75
130 0.92
150 0.99
170 0.9998
180 no wetting homogeneous 1

§ immediate growth can occur

This ecan have a dramatic effect on the nucleation rate and is used daily in foundries
in the form of inoculation. Here, substances are added to the melt which are
crystalline or form crystals at temperatures greater than the melting point. The
effect is usually time-dependent since the added substances tend to dissolve in the
melt. In the case of the breaking-off of dendrite branches there is no nucleation
problem at all since 0, and therefore AT, are zero. In this case, growth can
commence immediately.

The above arguments have been developed for pure metals with or without foreign
particles. They can also be applied to alloys. In this case, the Gibbs free energy is not
only a function of nucleus size (r or n), but also of composition. To a first
approximation, the critical size and composition would be found in this case from the

conditions, d( AG)/dn = 0 and d( AG)/dC = 0, which define a saddle point.

2.2 Rate of Nucleus Formation

In order to calculate the number of grains nucleated in a given molten volume and
time (called the nucleation rate), the simplest case will be considered. This is an ideal

nmixture between an ensemble, Nn, of small ecrystalline clusters, each of which
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contain n atoms, and N; atoms of the liquid. The equilibrium distribution \-..ubility)
of these clusters can be calculated (appendix 4) leading to the result, for n (when
N, <N )»

Ny - - AGy
N, expl kBT] [2.8]

Equation 2.8 and figure 2.3 show that there are always crystal clusters in a melt,
although they are not necessarily stable. Their number increases with decreasing
value of AGn. The number of clusters is shown schematically in figure 2.3 as a
density of points. lf the melt is superheated, d(AGn)/dn is always positive and the
equilibrium concentration of crystal nuclei is zero. In an undercooled melt, a
maximum in AGn, as a function of n exists, over which clusters can 'escape' and
form the flux of nuclei, I. The maximum value, AGR" (table 2.1), varies with

l/ATZ. The value of Nn" varies according to equation 2.8 and therefore:

= - Ko
Np® = Kjexpl- 574o] {2.9]

where Kl and KZ are constants. If it is assumed here that the rate of cluster
formation is so high or 1 is so small that the equilibrium concentration of critical
clusters, Nn°/N‘, will not change i.e. the source of nucleation will not be

exhausted (§), the steady-state nucleation rate is given by:

I= I(3Nn°

{2.10)

AGL°
I=K3N, expl- k_B-'F ]

where K3 is a constant.
However, the formation of clusters will require the transfer of atoms from the liquid
to the nuclei. An activation energy, AG 4 for transfer through the solid/liquid

interface must therefore be added to equation 2.10, giving (appendix 4):

= _(aGp°_+ AGg)
1= loexpl- A2 800 [2.11]

where Io is a pre-exponential factor. This important equation contains two

§ This assumption is a crude but useful simplification. For more
details, the reader is referred to J.W.Christian, 'The Theory of
Transformations in Metals and Alloys', Pergamon, Oxford,
2nd Edition, 1975, p418.
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exponential terms. One of these varies as —l/TAT2 (equation 2.9), while the other
varies, like the diffusion coefficient, as -1/T. An increase in AT, giving more
numerous and smaller nuclei of critical size, is accompanied by a decrease in T and

fewer atoms are transferred from the liquid to the nuclei. These opposing tendencies

a C
C C
) 0
b <3
1 1
1 f oo
b —_axp(-AGn/kgT) z 1. ¢
X 3 {10
z z NR ]
N, ]1030
fo) . . R
0 400 800
n  —e [ g

Figure 2.3: DEPENDENCE OF CLUSTER-SIZE DISTRIBUTION UPON
TEMPERATURE: g,c: free energy, AGp, of a cluster containing natoms, at two
temperatures. b,d: number of clusters, N, containing natows, as a fraction of
the number of atoms, N, in the liquid phase. There is an exponential relationship
between AG, and N,. Thermal fluctuations are always creating small
crystalline regions in the liquid, even at temperatures greater than the melting
point (a). The number of clusters, Ny, divided by the number of atoms in the
liquid, N, , will be much smaller for large clusters (large r or large number of
atoms, n), than for small ones (b). This variation in the distribution of cluster sizes
is represented schematically (a) as a varying density of points. At temperatures
below T (e), there will be a maximum, AGpL° in the free energy of the
fluctuating system as is also shown in figure 2.2. The clusters reaching this
critical size (nuclei) will grow. The corresponding cluster-concentration,
NL°/N,, and cluster size, n°® (minimum in figure d), are sensitive functions of
the undercooling. The nucleation rate will depend on the number of clusters
having the critical size, No/N, .
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lead to a maximum in the nucleation rate at a critical temperature, Tc' which is
situated somewhere between the melting point (AT =0) and the point where there is
no longer any thermal activation (T=0K). This is illustrated by figure 2.4a. Note that 1
would exhibit a maximum value even in the absence of the diffusion term. The
presence of the latter term increases the temperature at which the maximum ocecurs.

Since, for a unit volume of the melt, the reciprocal of the nucleation rate is time, the
1-T diagram can be easily transformed into a TTT-diagram (figure 2.4b) where the
curve represents the beginning of the liquid to solid transformation. The effect of
decreasing the wetting angle, 0, is mainly felt via its influence on the equilibrium
concentration of nuclei and a decrease in AT, i.e. nucleation occurs closer to the
melting point. At very high cooling rates, such as those encountered in rapid
solidification processing, there may be insufficient time for the formation of even
one nucleus, and a glassy (amorphous) solid then results {cooling curve 2 in figure 2.4b).
It is interesting to calculate the effect of a slight change in AGn" (due perhaps to a
change in f{@1) upon the nucleation rate. This can easily be done by approximating
equation 2.11. At low values of AT, the value of exp[—AGd/kBT] is approximately
equal to 0.01 and l0 is approximately equal to lO“m—ss—l. The nucleation

rate (in units of m~35—l) therefore becomes:

AG

=1039 -
10%9%expl KD

r"l“] [2.12]

A nucleation rate of one nucleus per cn13 per second (losm'ss'l) oceurs
when the value of (AGn"/kBT) is about 76. Close to this value, a change in the
exponential term of a factor of two, from 50 to 100 for example, decreases the
nucleation rate by a factor of 1022. When AGn"/kBT is equal to 50,
108 nuclei per litre of melt per microsecond are formed. If the latter term is equal
to 100, only one nucleus will be formed per litre of melt over a period of 3.2years
(figure 2.5). This example shows that very slight changes in the solid/liquid interface
energy can have striking effects.

By calculating the undercooling, for a constant value (l/cmss) of I, as a function of
0, another interesting result is revealed. This is illustrated by table 2.3 which gives
the change in undercooling in heterogeneous nucleation as a function of the
nucleus/substrate contact angle. If the substrate is highly dispersed, as in inoculation,
the active surface area of the inoculant must also be taken into account in the
pre-exponential factor (Io), in equation 2.11. This leads to a decrease in the
undercooling. This effect is relatively small in comparison with that caused by =a
change in activation energy, and is therefore usually neglected. However, the grain
size will be inversely proportional to the particle density. When a fine grain size is

required, it is clear that many finely dispersed particles should be introduced into the
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Figure 2.4: NUCLEATION RATE AND NUCLEATION TIME AS A FUNCTION OF
ABSOLUTE TEMPERATURE. The overall nucleation rate, I (number of nuclei
created per unit volume and time), is influenced both by the rate of cluster
formation, depending upon the nucleus concentration (N.°), and by the rate of
atom transport to the nucleus. At low undercoolings, the energy barrier for
nucleus formation is very high and the nucleation rate is very low. As the
undercooling increases, the nucleus formation rate increases before again
decreasing (a). The decrease in the overall nucleation rate, at large departures
from the equilibrium melting point, is due to the decrease in the rate of atomic
migration (diffusion) with decreasing temperature. A maximum in the nucleation
rate, ly, is the result. This information can be presented in the form of a TTT
(time-temperature- transformation) diagram (b) which gives the time required for
nucleation. This time is inversely proportional to the nucleation rate, and
diagram (b) is therefore the inverse of diagram (a) for a given alloy volume. The
diagram indicates that there is a minimum time for nucleation, tg, (proportional
to 1/1y). This minimum value can be moved to higher temperatures and shorter
times by decreasing the activation energy for nucleation, AG° [dash-dot line in
(p)]. When liquid metals are cooled by normal means, the cooling curve will
generally cross the nucleation curve (curve 1) somewhere close to Ty. However,
very high rates of heat removal (curve 2) can cause the cooling curve to miss the
nucleation curve completely and an aniorphous solid (hatched region, glass) is then
formed via a continuous increase in viscosity (figure 1.1). The production and
characterisation of metallic glasses is currently the subject of intensive study.
Note that this figure relates to nucleation (start of transformation) only. The
second curve of a TTT diagram which describes the end of the transformation,
after growth has occurred, is not shown.
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Table 2.3: ABSOLUTE AND RELATIVE UNDERCOOLINGS, REQUIRED TO GIVE ONE
NUCLEUS PER SECOND PER CM3, AS A FUNCTION OF 0

6 AT/ Ty AT(Tg = 1500K)
180 0.33 495
90 0.23 345
60 0.13 195
40 0.064 96
20 0.017 25.5
10 0.004 6.5
5 0.001 1
0 0.0 ¢
10!.0
102}
100 million
nuclei in
—_ 1l per us
PR 102x - - -
L 1 nucleus
£ iin 1l per
L 0-20 3.2 years
- 1 =
10740
10‘60 " 2
76
10 1 10 50 102 103

AGa/ kT

Figure 2.5: NUCLEATION RATE AS A FUNCTION OF ACTIVATION ENERGY,
AG.°. Variations in the value of the term, AG.°/kgT, have a remarkable
effect upon the rate of nucleation, I, due to the exponential relationship. If, for an
observable rate of I = 1/em3s, AGL°/kgT is changed by a fgctor of two, the
resultant change in the nucleation rate is of the order of 104%. Thus, changing
the temperature or changing the value of AGL® ean enormously increase or
decrease the nucleation rate. The value of AG.° can be decreased by adding
foreign crystalline particles which 'wet' the growing nucleus to the melt
(inoculation), or by increasing the undercooling.
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melt. More importantly, these particles should have a low interface energy when in
contact with ttie solid which is to be nucleated. This is most likely to be so when the
nuclei and the nucleated solid have similar atomic structures and the same type of
bonding. In many casting situations, this is most effectively achieved by the
breaking-off of dendrite arms by convection in the melt. This phenomenon is
exploited in the continuous casting of steel by electromagnetically stirring the melt.
This method is very effective since it produces nuclei (dendrite arms) which are free
of any oxide film which might impair wetting. The presence of oxide films on
inoculants is often a problem since they inhibit the action of the latter. For this
reason, inoculation by chemical reaction or precipitation in the melt is favoured.
Peritectic reactions are most effective in pure metals such as Al since precipitates
having a higher melting point than that of the melt are formed and can promote

nucleation before dissolution occurs.

2.3 Interface Structure

Once a nucleus is formed, it will continue to grow. Such growth will be limited by:

- the kinetics of atom attachment to the interface,

- capillarity,

- diffusion of heat and mass.
The relative importance of each of these factors depends upon the substance in
qguestion and upon the solidification conditions. This chapter will consider only the
atomic attachment Kinetics, and the other processes will be treated in chapters 3 to 5.
The kinetics of atomic addition can play an important role in some substances. When
the latter exhibits the 'non-faceted' growth morphology typical of a metal, it can be
assumed that the Kinetics of transfer of atoms from the liquid to the crystal are so
rapid that they can be neglected. When the substance exhibits the faceted mode of
growth typical of non-metals or intermetallic compounds, a large Kinetic term may
be involved. However, it is by no means certain that this term will dominate the
growth process.
The classification of substances into faceted and non-faceted types is based upon
their growth morphology (figure 2.6). Metals, and a special class of molecular
compounds (plastic crystais), usually solidify with macroscopically smooth solid/liquid
interfaces and exhibit no facets, despite their crystalline nature. This behaviour
reflects an independence of the atomic attachment Kinetics with respect to the
crystal plane involved. A slight tendency to anisotropic growth remains and results

from an anisotropy of the interface energy and the atomic attachment kinetics. This
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leads to the appearance of crystallographically determined dendrite trunk and arm
directions of low-index type. On the other hand, substances exhibiting complex
crystal structures and directional bonding form crystals having planar, angular
surfaces (facets). Note that the faceted versus non-faceted classification also
depends upon the growth process. A substance which exhibits non-faceted crystais
when grown from the melt can give faceted crystals when grown from a solution or

vapour.

Figure 2.6: NON-FACETED AND FACETED GROWTH MORPHOLOGIES. After
nucleation has occurred, further atoms must be added to the crystal in order that
growth can continue. During this process, the solid/liquid interface takes on a
specific structure at the atomic scale. This structure depends on the difference in
erystal structure and bonding between liquid and solid. During the solidification of
a non-faceted material, such as a metal(a), atoms can be added easily to any
point of the surface and the crystal shape is dictated mainly by the form of the
heat and solute diffusion fields. Nevertheless, a remaining slight anisotropy in
properties such as the interface energy leads to the growth of dendrite arms along
certain crystallographic directions. In faceted materials, such as intermetallic
compounds or minerals(b), the inherently rough, high-index planes accept added
atoms readily and grow quickly. As a result, these planes disappear and the crystal
remains bounded by the more slowly growing facets (low-index planes). The
classes of non-faceted and faceted crystals can be distinguished on the basis of
the higher entropy of fusion of the latter. This is due to the greater difference in
structure and bonding between the solid and liquid phases as compared to metals,
which exhibit only very small differences between the two phases.

www.iran-mavad.com
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In the present book, the classification will only be applied to melt-grown crystals.
This classification is of practical interest to metallurgists because of the importance
of internietallic phases and compounds in most alloys, and the large-scale industrial
use of eutectic alloys (chapter 5) which contain a faceted phase as one component
(e.g. Fe-C, Al-Si). From a theoretical point of view, the reason for this marked
difference in morphology is worthy of mention here because of the light which it
throws on the detailed structure of the solid/liquid interface at the atomic level.
Finally, an understanding of atomic attachment kinetics aids the correct choice of
transparent model systeins which are often used in order to observe solidification
phenomena directly (figures4.3 and 4.16).

I'he growth rate of a crystal depends upou the net difference between the rates of
attachinent and detachment of atoms at the interface (appendix 5). The rate of
attachiment depends upon the rate of diffusion in the liquid, while the rate of
detachment depends on the number of nearest neighbours binding the atom to the
interface. 'Yhe number of nearest neighbours depends upon the crystal face
considered, i.e. upon the surface roughness at the atomic scale (number of
unsaturated bonds). This is the simplest possible situation. In general, reorientation of
a complicated molecule in the melt, surface diffusion, and other steps may be
required.

Consider the essentially flat interface of a simple cubic crystal. Here, an atom in the
bulk crystal has six nearest neighbours represented by the six faces of a cube
(figure 2.7). There are five different positions at the interface, characterised by the
number of nearest neighbours (1 -5). In an undercooled system, where the crystal has
a lower free energy, it is evident that an atom in position 5 will have a very much
higher probability of remaining in the crystal than will an atom in position 1. In order
to incorporate atom 1 into the crystal, a very large difference must exist between the
foree binding it to the ecrystal, and the force binding it to the liquid. In order to
create such a difference, a large undercooling of the melt is required.

An atomically flat interface (figure 2.8a) will maximise the bonding between atoms in
the crystal and those in the interface. Thus, such an interface will expose few bonds
to atoins arriving via diffusion through the liquid. Such a crystal has & tendency to
close up any gap in its solid-liquid interface at the atomic scale. This leads to
crystals which are faceted at the microscopic scale and usually exhibit high
undercooiings.

An atomically rough interface (figure 2.8b) always exposes a lot of favourable sites
for the attachment of atoms from the liquid. Such an interface tends to remain rough
and leads to smooth erystals which are non-faceted at the microscopic scale and
exhibit low kinetic undercoolings.

Generally, it can be said that the greater the difference in structure and bonding
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between the solid and iiquid phases, the narrower is the transition region over which
these differences have to be accommodated. A sharp transition (i.e. an atomically
flat, microscopically faceted interface) exhibits little tendency to incorporate newly
arriving atoms into the crystal. Hence growth is more difficult and requires an
additional (kinetic) undercooling. Also, because high-index crystallographic planes
tend to be inherently rough and to contain many steps, a marked anisotropy in growth
rates can develop when the low-index planes are atomically flat. This, in turn, leads

to the disappearance of the higher index planes, due to their more rapid growth, and

Figure 2.7: VARIATION IN BOND NUMBER AT THE SOLID/LIQUID INTERFACE
OF A SIMPLE-CUBIC CRYSTAL. In order to understand the two types of growth
shown in figure 2.6, the various ways in which an atom can be adsorbed onto the
solid/liquid interface have to be considered. Growth is determined by the
probability that an atom will reach the interface and remain adsorbed there until
it has been fully incorporated into the crystal. This probability increases with an
increasing number of nearest neighbours in the crystal. The possible arrangements
of atoms on the crystal interface are indicated here, where the numbers specify
the number of neighbouring atoms in the crystal. The atoms of the liquid phase
are not shown here. A special role is played by type 3 atoms in the growth of
faceted crystals because, having three bonds, they can be considered to be
situated half in the solid and half in the liquid (when the crystal coordination
number is 6 as in a simple cubic crystal). A likely growth sequence would be:
addition of type 3 atoms until a row is complete; addition of & type 2 atom to start
a new row; and so on until a layer is complete. Thereupon, nucleation of a new
layer by the addition of a type 1 atom would be necessary. This is an unfavourable
process and requires a very high undercooling. Therefore, other processes will play
a role (figure 2.10).
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Figure 2.8: FORM OF FACETED (a) AND NON-FACETED (b) INTERFACES.
Transparent organic substances, when observed under the microscope during
directional solidification (upwards growth), exhibit the forms shown in the upper
diagrams (the liquid is uppermost). It is important to note that, during growth, a
faceted interface(a) is jagged and faceted at the microscopic scale (upper
diagram), but smooth at the atomic scale (lower diagram). On the other hand, a
non-faceted interface (b) can be microscopically flat (upper diagram), while at the
atomic scale it is rough and uneven (lower diagram). This roughness causes the
attachment of atoms to be easy and largely independent of the ecrystal
orientation. Note also that the interface of a non-faceted material will grow at a
temperature which is close to the melting point, Tg, while the interface of a
faceted material might have a very high local undercooling. Such a point (arrow)
is a re-entrant corner (figure 2.10), and is associated with an increased number of
nearest neighbours. Thus, growth will tend to spread from here.

leads to a characteristic crystal form which is bounded by the slowest growing faces
(right hand side of figure 2.9).
Metals, on the other hand, have a siinilar structure, density, and bonding in both the
liquid and solid states. Hence, the transition from one phase to the other at the
interface is very gradual and the interface becomes rough and diffuse (i.e. it exposes
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Figure 2.9: DEVELOPMENT OF FACETED CRYSTAL GROWTH MORPHOLOGIES.
A growing cubic crystal which is originaiiy bounded only by (100) planes (left hand
side) will change its shape to an octahedrai form (bounded by (111)) when the
(100) planes grow more quickiy than the (1ii)pianes (a). Often, impurities change
the growth behaviour of specific planes and this results in the appearance of
different growth forms for the same crystal structure. If the (i10)planes are the
slowest-growing, this will lead to a rhombohedral dodecahedron (b). The
slowest-growing planes (usually of low-index type) always dictate the growth habit
of the crystal. The resultant minimum growth rate form is not the same as the
equilibrium (non-growing) form, which is governed by minimisation of the totai
surface energy. In the above sequences, the crystal size has been kept constant.

Table 2.4: GROWTH MORPHOLOGIES AND CRYSTALLISATION ENTROPIES

Dimensionless Supersaturated
Entropy (AS¢/R) Substance Phase Morphology
~1 metals melt non-faceted
~1 'plastic' crystals melt non-faceted
2-3 semiconductors solution nf/faceted
2-3 semimetals solution nf/faceted
~6 molecular crystais solution faceted
~10 metals vapour faceted
~20 complex molecules melt faceted
~100 poly mers melt faceted
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many suitable growth steps to atoms arriving from the meit).

The elting entropy is a convenient criterion for predicting this aspect of the
crystallisation behaviour. Values of & (= ASf/l{) which are less than 2 can be taken
to imply a tendency to non-faceted crystal growth, while higher (-values imply that
faceted growth forms will be produced.

In table 2.4, a list of different substances is presented which compares their growth
forms and their dimensionless entropies for crystallisation from various media. The
fact that metals and plastic crystals(§) fali into the same group is of great value in
the study of solidification. The interior of metals can obviously not be observed using
visible light, whereas the transparent, low-meiting-point organic crystals can easily
be studicd in this way. Microscopic study of their interface morphology during growth
has provided a good deal of useful information and continues to be an attractive
re<earch tool.

A high entropy of fusion increases the disparity in growth rates bctween the

low-index planes and the faster-growing high-index pianes. Table 2.5 presents some

Table 2.5t GROWTH RATE COEFFICIENT, thl’ AS A FUNCTION OF
CRYSTALLISATION ENTROPY FOR A SIMPLE-CUBIC TWO-DIMENSIONAL
CRYSTAL (Jackson, 1968)

Dimensionless

Entropy, & Koo Kyl K11i/X¥j00
1 0.2 0.1 0.5
5 0.007 0.01 1.4
10 0.000005 0.0001 20.0

§ Plastic crystals are a special class of niolecular substance
(organic or inorganic) whose molecular asymmetry is destroyed
by rotational motion. That is, the molecules behave like spheres
having surfaces defined by the envelope of all of the possible
arrangements of the molecule's extremities. Since these
'spheres’ no longer exhibit asymmetry or directional bonding,
they can arrange themselves into simple crystal structures;
particuiarly cubic ones, and many of their properties are
anaiogous to those of metals. For example, the name, 'plastic’,
refers to their observed high malleability. In the present
context, however, it is interesting to note that they were first
recognised as a distinct class due to their low entropies of
fusion. This also indicates that their crystallisation behaviour
will be analogous to that of metals.
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numerical estimates for growth rate coefficients, as a function of the

K

hkl’
dimensionless entropy and crystallographic plane for a simple-cubie, two-dimensional
crystal (appendix 5), used as a rough approximation of the behaviour of a real
three-dimensional crystal. At small undercoolings, with respect to Tp the actual

growth rate of the faces can be obtained from the expression:

V=K AT [2.13]

hkl

This expression corresponds to equation A5.7, and assumes that a simple growth
mechanism is opcrating. It can already be seen from this simple example that a very
marked anisotropy resuits in the case of a high meiting entropy. That is, the ratio of
V[l“] to Vuuu] is increased, and the absolute growth rates are markedly
decreased. As a consequence, a crystal of a substance having a iarge value of « will
be bounded by (100) planes.

Observation of primary crystals growing from melts of various composition often
permits the relative growth rates of different crystal faces to be deduced.

The widest range of morphologies arising from differences in the growth rates of
various faces is probably that exhibited by hexagonal ice crystals growing from the
vapour. An example of more practical importance to metallurgists is that of
castiron. The faceted phase (graphite) grows at a different rate in different

directions. When V[OOO[] is less than V plates delimited by (0001) planes

{1oloy

appear, and the morphology is referred to as 'flake graphite'. When V is less

than V[UUOI]’ hexagonai prisms form. Often, this is not immedia[tleul;mevident
because the prisms tend to grow in a radial direction and the morphology is then
called 'spherulitic'. Changes in the growth behaviour of graphite are obtained in
practice by controlling the trace element concentration. For example, the presence
of S leads to the appearance of flake graphite whiie the presence of Mg or Ce results
in the production of nodular cast iron.

Due to the greater difficulties experienced in attaching atoms to the surfaces of
substances possessing a high entropy of fusion, surface defects are of particular
importance in this case. Evidently, such defects do not greatly facilitate growth if
the attachment of the atoms easily removes them. Therefore, only those defects
which cannot be eliminated by growth are effective (figure 2.10). These include screw
dislocations which emerge at the growth surface, twin boundaries, and rotation
boundaries. Each of these supplies re-entrant corners (steps) which locally increase
the number of bonds which an attached atom makes with the erystal (figure 2.7). This
reduces the kinetie undercooling and ieads to highly anisotropic growth. As a result,
the morphology becomes sheet-like (planar defect in b and ¢) or whisker-like (line
defect in a)- This phenomenon has a marked effect upon the growth behaviour of the

most widely used eutectic alloys, Fe-C and Al-Si (chapter 5).
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Finally, it should be noted that under a sufficiently high driving force (e.g. high
undercooling) the atomie interface of even a high melting entropy phase may hecome

rough. lts growth behaviour then becomes more isotropic.

Figure 2.10: REPEATABLE GROWTH DEFECTS IN FACETED CRYSTALS. As
pointed out with reference to figure 2.7, steps in rows of atoms are favoured
growth sites, but can easily be eliminated by the very growth which they promote.
Several types of defect have been shown to provide steps and also to be impossible
to eliminate by growth. These are the emergent screw dislocation (a) [F.C.Frank:
Discussions of the Faraday Society 5 (1949) 48], which leads to the establishment
of a spiral ramp; the re-entrant corner due to twinning{(b) [D.R.Hamilton,
R.G.Seidensticker: Journal of Applied Physics 31 (1960) 1165] which acts as a
macroscopic step; and the twist (rotation) boundary which also provides effective
steps (c). Depending upon the type of defect present, the faceted crystal can
exhibit various morphologies: needles in the case of line defects(a), or plates in
the case of planar defects - e.g. Si in Al-Sialloys (b) or graphite in cast iron (c)
[l.Minkoff in: The Solidification of Metals, Iron and Steel Institute Publication 110,
London, 1968]). The latter two defects are important in understanding the growth
of irregular eutectic microstructures.
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2.1 -

2.6 -

2.7 -

2.8 -

EXERCISES

Show that setting the first derivative of equation 2.4 equal to zero leads to

equation Z.1.

Compare the dA/dvratio of spheres and cylinders with equation 1.5, and the

curvature of the critical nueleus.

What is the meaning of the expression, d(AG)/dr =0, in terins of the forces

acting upon the critical nuclcus?

Develop an equation for AG-n which is analogous to equation 2.4, and

calculate AGn" and n°.

Derive equation 2.5. What approximations are made? Why must caution be

exercised when applying it to cases involving high undercooling?

For small undercoolings, the nucleation rate given by equation 2.11 can be
written in the form, l=Klexp[-K2/ATZ]. Develop expressions for K1
and K2 and explain the origin of the term, A'Fz. Determine how much
K., and K, must change in order to double the value of AT required to

1 2 _
3 -1
produce one nucteis m s

1 []37111_38"14

when Kl is originally equal to

In his classic experiments, Turnbull divided a melt up into droplets which
were only a few microns in diameter in order to measure the temperature at

which homogeneous nucleation occurred. Why did he use this method?.

By measuring the temperature required for homogeneous nucleation, it is
possible to determine the solid/liquid interface energy, which is difficult to
measure using other methods. Develop the equations needed for this with the
aid of equation2.11. In order to learn inore about this technique, the reader
should consult the papers of D.Turnbull: Journal of Applied Physics 21 (1950)
1022 and J.H.Perepezko et al in: Solidification and Casting of Metals, The

Metals Society, London, 1979, pl169.
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2.9 -

2.10 -

2.11 -

2.12 -

2.14 -

Show that n° and AGe° are functions of @ but not r°. Why is this so? (See

appendix 3, figure 3.7).

Determine the curvature and the melting point of a pure iron erystal in a

wetted (0 =30°) conical pore in the crucible surface, as illustrated below.

liquid

102 um

a = 60°

crucible

What will happen if one stirs 0.1wt% of Ti powder into a pure Al melt at
700C just before casting? (Hint: consult the phase diagram!). For more
details, see T.W.Clyne, M.H.Robert: Metals Technology 7 (1980) 177.

Water and Bi expand during solidification. From this fact alone, one can make
predictions concerning the entropy of melting, and therefore the
crystallisation behaviour, in terius of the faceted/non-faceted classification.

What reasoning would you employ?

Show graphically in two dimensions why rapidly growing planes disappear

during crystal growth and leave the slowest growing ones.

What is the difference in the shape of an equilibrium erystal, when V=0 and
0 is a minimurn for {111} , and the shape arising from growth when V>0 and

is a minimum for {100) ?

Explain why an atomically smooth interface is usually microscopically rough

when growing in a temperature gradient (figure 2.8a - top).
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CHAPTER THREE

MORPHOLOGICAL INSTABILITY OF
A SOLID/LIQUID INTERFACE

Classical thermodynamic definitions of stability are inapplicable to the determination
of the morphology of a growing interface, and current extensions of equilibrium
thermodynamics have not yet furnished a fully acceptable alternative. Meanwhile, in
order to proceed with theoretical analyses of growth morphologies, it has been found
necessary to use heuristically-based stability criteria. The simplest assumption made
is that the morphology which appears is the one which has the maximum growth rate
or minimum undercooling. An alternative method is the use of stability arguments.
These involve perturbing the mathematical function, which describes the solid/liquid
interface morphology, in order to determine wiiether it is likely to change into
another one. The interface is then said to be morphologically unstable if the
perturbation is amplified with the passage of time and to be morphologically stable if
it is damped out (figure 3.1).
Www.irangmavad.com
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10 um

Figure 3.1: INITIAL EVOLUTION OF AN UNSTABLE (a) or STABLE (b)
INTERFACE. Such an interface might be observed during light microscopical
observation of transoparent non-faceted organic substances. During growth, any
interface will be subject to random disturbances caused by insoluble particles,
temperature fluctuations, or grain boundaries. A stable interface is distinguished
from an unstable interface by its response to such disturbances. It is imagined
here that the interface is initially slightly distorted by a spatially regular
disturbance. If the distorted interface is unstable(a), the projections may find
themselves in a more advantageous situation for growth and therefore increase in
prominence. In the case of a stable interface(b), the perturbations will be
unfavourably situated and tend to disappear. During the casting of alloys, the
solid/liquid interface is usually unstable. A stable interface is only obtained in
special cases such as columnar solidification of pure metals (figure 1.7a) or
directional solidification of alloys in a Bridgman-type furnace (figure 1.4a) under a
suf ficiently high temperature gradient, G. The indicated scale is typical (or alloys
under normal casting conditions.
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3.1 Interface Instability in Pure Substances

The conditions which lead to instability can easily be understood in the case of a pure
substance. Figure 3.2 illustrates, in a schematic manner, the development of a
perturbation during columnar and equiaxed growth (see also figure 1.7).

During columnar growth of a pure substance (figure 3.2a), the temperature given by
the heat flux, T , increases in the z-direction (i.e. G is positive). The interface will
be found at the isotherm where the temperature, Tq’ imposed by the heat flux is
equal to the equilibrium melting point, Tf(§).

If an interface perturbation is to remain at the melting point over its entire surface,
and curvature effects are neglected, the temperature field (T ) must be deformed
so that the temperature gradient in the liquid at the tip (along line A-A) increases
while the temperature gradient in the solid decreases. According to Fourier's first
law this means that the heat flux from the liquid to the tip increases and that the
flux in the solid decreases. Therefore, more heat will flow into the tip and less will
flow out of it. Meanwhile, the reverse situation occurs in the depressions (line B-B).
As a result, the perturbation tends to be damped out. Thus, the interface of a pure
substance during columnar growth will always be stable.

Turning now to equiaxed solidification, the situation is completely different
(figure 3.2b). In this case, the heat flux does not reach the mould wall via the solid
but through the melt. Therefore, the melt must be undercooled in order to establish
the necessary temperature gradient at the solid/liquid interface. The temperature
gradient in”the liquid will therefore be negative, while the gradient in the solid is
essentially zero. A perturbation will sense a higher gradient at its tip, leading to an
increased heat flux, and a resultant increase in the growth rate of the tip. Thus, the
interface of a pure substance (with negligible kinetic undercooling) will always be
unstable under equiaxed solidification conditions. The immediate result is that
equiaxed grains in a pure metal always adopt a dendritic morphology (figure 1.7b).
Because segregation is absent, the dendritic form will not be detectable in a solid,

pure metal casting. Fortunately, the characteristics of dendritic growtn in this case

§ In general, a growing interface will always require some
(kinetic) undercooling below the equilibrium melting point for
its advance (figure 2.8 and equation 2.13). In faceted substances,
this undercooling may be appreciable (greater than 1K). In
non-faceted substances, such as metals, its value will be
negligibly small in most cases. lts effect can generally be
ignored for these materials under normal solidification
conditions.
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can be very closely observed in pure organic substances or in pure water.

It can be concluded that the solid-liquid interface of a pure metal will always be

stable if the temperature gradient is positive, and unstable if the gradient is
negative. Perturbations will grow if the temperature gradient at the interface, given
by the heat flux, G =qu/dz, obeys the relationship:

G<0 (pure metals) [3.1]

Figure 3.22 COLUMNAR AND EQUIAXED SOLIDIFICATION OF A PURE
SUBSTANCE. In a pure substance, stability depends on the direction of heat flow.
In directional solidiiication, as in the columnar zone of a casting, the temperature
always increases with distance ahead of the interface (a). Therefore, the heat flow
direction is opposite to that of solidification. When a perturbation of amplitude,
€, forms at an initially smooth interface (thin line in the above figure), the
temperature gradient in the liquid increases while the gradient in the solid
decreases (compare full and dotted lines along section, A-A). Since the heat flux
is proportional to the gradient, more hcat then flows into the tip of the
perturbation and less flows out of it into the solid. As a result, the perturbation
melts back and the planar interface is stabilised. In equiaxed solidification, the
opposite situation is found(b). Here, the free crystals grow into an undercooled
melt (cross-hatched region) and the latent heat produced during growth also flows
down the negative temperature gredient in the liquid. A perturbation which is
formed on the sphere will make this gradient steeper (full line compared to the
dotted line) and permit the tip to reject more heat. As a result, the local growth
rate is increased and the interface is always morphologically unstable.
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3.2 Solute Pile-Up at a Planar Solid/Liquid Interface

In alloys, the criterion for stable/unstable behaviour is more complicated because the
local equilibrium melting point can vary along the solid/liquid interface. During the
solidification of an alloy, solute will pile up ahead of the interface due to the smaller
solubility of the solid when the distribution coefficient is less than unity (figure 1.11).
The excess solute rejected from the solid will accumulate in an enriched boundary
layer ahead of the interface. The fully developed diffusion boundary layer, which is
analogous to the bow wave of a ship, is illustrated in figure 3.3. It is established
during a transient period beforc steady-state (time-independent) growth begins. In
this steady-state situation, where all of the concentrations are constant with respect
to a reference frame moving with the solid/liquid interface, the solid forms at the
solidus temperature. Therefore, the composition of the solid is equal to that, Co, of
the liquid far ahead of the interface (where the effect of the solute pile-up has not
yet been felt). The solute concentration in the boundary layer decreases

exponentially, from Co/k to Co' according to (appendix 2):

C, =Co+ ACqexpl- ] (3.2]

Mathematically, the thickness, 60, of the boundary layer is infinite. However, for
practical purposes it can be taken to be equal to the 'equivalent boundary layer'
(appendix 2):

0, = (3.31

<3

This length is equal to the buse-length of a right-angled triangle having a height
which is equal to the excess solute concentration at the interface, and an area which
is the same as that under the exponential curve. Equation 3.3 reveals that the
equivalent boundary layer thickness is inversely proportional to the growth rate.

A simple flux balance shows that an interface of area, A, rejects J, atoms per

second:

Js=a(gErcr-com (3.4]

where the termn, A(dz/dt), represents the volume of liquid which is transformed to
solid per unit time, and the second term represents the difference in the solute

concentrations in the liquid and the solid at the interface. Under steady-state
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conditions, the resultant flux of rejected solute has to be balanced by an equal flux

which takes solute away from the interface by diffusion. The flux in the liquid is:

3, = -AD( $29 (3.5]

Equating the fluxes and noting that, in the steady state, Ci“=Co/k, gives the

important flux balance:

Ge = ( SJ—SL)Z:D = - (‘—’D)AC0 [3.6]

Cofk

Figure 3.3: STEADY-STATE BOUNDARY LAYER AT A PLANAR SOLID/LIQUID
INTERFACE. In the case of an alloy, the stability arguments are similar to those
advanced in the caption to figure 3.2, except that solute diffusion as well as heat
flow effects must be considered. The former will be considered here. Firstly, as
the interface advances, solute is rejected if the solubility of the solute in the solid
is lower than that in the liquid (k less than unity). When the interface has been
advancing for some time, the concentration distribution becomes
time-independent (steady-state). If a planar interface is advancing under
steady-state conditions at a rate which permits local equilibrium to be assumed,
then the solute concentration in the solid is the same as that of the original melt
(appendix 2). Under these circumstances, the concentration in the liquid decreases
exponentially from the maximum composition, Co/k, at the interface to the
original composition, Cg,, far from the interface. In general, the rate of
rejection of solute at the interface is proportional to the growth rate. The
rejected solute must be carried away by diffusion down the interfacial
concentration gradient, and this therefore becomes steeper with increasing
growth rate. In the figure, the boundary layers for two growth rates, Vo >V,
are shown.
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3.3 Interface Instability in Alloys

It is seen from the above that, during the solidification of an alloy, there is a
substantial change in the concentration ahead of the interface. This change wil
affect the local equilibrium solidification temperature, T, , of the liquid, which is

related to the composition by:
T, (Co) -1, = m(C0 -C,) {3.71

where T, (Co) is the liquidus temperature corresponding to the initial alloy
composition. This relationship is shown in figure3.4 and indicates that the
concentration boundary layer can be converted, using the phase diagram, into a
liquidus-temperature boundary layer. The liquidus temperature increases with
increasing z, when the value of k is less than unity, because the value of m is then
negative. It represents the local equilibrium temperature for the solidification of a
corresponding volume element of the melt. To investigate stability, it is also
necessary to determine the temperature, Tq' imposed by the heat flux. Both
temperatures must be equal at the interface (see previous footnote). In the steady
state growth of a planar interface, this will correspond to the solidus temperature for
the composition, Co' as shown in figure 3.4.

Depending upon the temperature gradient,
dT
= —_— - -8
G =( dzq )z=0 (3.8)

in the liquid at the solid/liquid interface (which is imposed by the external heat flux)
there may, or may not, exist a zone of constitutional undercooling (figure 3.5). This
zone is defined to be that volume of melt ahead of the interface within which the
actual temperature, Tq' is lower than the local equilibrium solidification
temperature, T, . The melt in this zone is thus undercooled, i.e., in a metastable
state. It is quickly seen that the condition required for the existence of such a
constitutionally undercooled zone is that the temperature gradient, G, at the
interface in the liquid should be lower than the gradient of liquidus temperature
change in the melt. The latter gradient is obtained by multiplying the concentration
gradient, Gc’ by the liquidus slope, m. Therefore, the interface is constitutionally

undercooled when:

G < mG, (alloys) {3.9]
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As before, consider the behaviour of a perturbation arising during directional
solidification. Such a protuberance at the solid/liquid interface will increase the local
temperature gradient in the melt. In the case of a pure melt (figure 3.2), this led to
the disappearance of the perturbation. However, in an alloy melt (figure 3.4), the
local concentration gradient will also become steeper and consequently the local
gradient of the liquidus temperature will increase. Hence, the region of constitutional

supercooling will tend to be preserved.

Col/k

ACo

Tiice)

—ATp —

TsiCo)

Figure 3.4: CONSTITUTIONAL UNDERCOOLING IN ALLOYS. The steady-state
diffusion boundary layer, shown in figure 3.3, is reproduced here (upper diagram)
for a given growth rate. As the liquid concentration, C;, decreases with distance,
z, the liquidus temperature, F, (i.e. the melting point), of the alloy will increase
as indicated by the phase diagram. This means that if small volumes of liquid at
various distances ahead of the solid/liquid interface were extracted by some
means and solidified, their equilibrium freezing points would vary with position in
the manner described by the heavy curve in the lower left-hand diagram.
However, each volume element finds itself at a temperature, Tq, which is
imposed by the temperature gradient arising from the heat flow ocecurring in the
casting. Since, at the solid/liquid interface (z=0), T, must be less than or equal
to Tg in order to drive the atomic addition mechanism, there may exist a volume
of liquid which is undercooled when the gradient of Tq is less than the gradient
of T,. This ({(cross-hatched) region is called the zone of constitutional
undercooling. There exists a driving force for the development of perturbations in
this volume as in figure 3.2b.
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In the introduction to this chapter, it was stated that equilibrium thermodynamics
principles could not properly be applied to solidification. However, it is interesting to
see how far the use of such classical methods can be pursued in this non-equilibrium
situation. In general, growth rates and undercoolings are found to be closely related
by functions whose form depends upon the process controlling growth (atomic
attachment, mass diffusion, or thermal diffusion). In each case, the growth rate
increases with increasing undercooling. An interface perturbation can be imagined to
experience a driving force, f', for accelerated growth which is given by the negative

value of the first derivative of the Gibbs free energy with respect to distance:

{r = _ dAG)
dz

[3.10]

Figure 3.5: CONDITION FOR CONSTITUTIONAL UNDERCOOLING AT THE
SOLID/LIQUID INTERFACE, AND THE RESULTANT STRUCTURES. When the
temperature gradient due to the heat flux is greater than the liquidus temperature
gradient at the solid/liquid interface, the latter is stable (a). On the other hand, it
can be seen that a driving force for interface change will be present whenever the
slope of the local melting point curve (liquidus temperature) at the interface is
greater than the slope of the actual temperature distribution. This is easily
understood since the undercooling encountered by the tip of a perturbation
advancing into the melt increases and therefore a planar interface is unstable (b).
After the dendritic microstructure shown has developed, the region of
constitutional undercooling is largely eliminated.
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For small undercoolings, AG = ASf AT and ASf = constant. Thus,

r=-asp(280) = -ased (3.11]

where AT=T, -Tq, and ¢ is the difference between the liquidus temperature
gradient (ch) and the heat-flux-imposed temperature gradient at the

interface (G):

¢=(%‘;T)Z:o:(§g —S—ZT-Q)F(,:ch-G [3.12]

Since ASf is negative for solidification, a positive driving force will exist which
causes any perturbation to grow when ¢ is positive, i.e. when a zone of constitutional
undercooling exists ahead of the interface. If its value is zero or negative, G is equal
to, or greater than, ch. The limiting condition for constitutional undercooling is

therefore:
$=0 [3.13]

Thus, this pseudo-thermodynamic approach gives the same result as that deduced
from consideration of the zone of constitutional undercooling. Since the
concentration gradient at the interface is known, it is simple to derive the criterion
for the existence of constitutional undercooling in another form. The interface will
always become unstable if equation 3.9 is satisfied. Using equation 3.6, this can be

written:

Table 3.1: SUMMARY OF STABILITY CONDITIONS IN PURE METALS AND ALLOYS

Growth Conditions

Equiaxed Columnar
(G=0) (G =0)
pure metal - +
alloy - - (@>0)
+ @<0)

(-) interface always unstable, (+) always stable
www.iran-mavad.com
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G<- r%Qo [3.14]

Also, because -m AC = AT (equation 1.9), the limit of constitutional

undercooling can be expressed in its usual form:

G . aT,
7 5 (3.15]
or
= 6D
Ve = ATq

where ATO can be replaced by the expression: mCO(k-l)/k (equations 1.9, 1.10). If
G/V is smaller than ATO/D- instability will result (§).

Table 3.1 summarises the types of interface morphology to be expected under various
conditions, and table 3.2 presents typical numerical values involved in constitutional
undercooling. It is evident that, even for relatively low solute concentrations, high
temperature gradients must be imposed in order to suppress interface instability and
cellular or dendritic growth. Note that, in the preparation of single crystals, or in
other directional growth processes, a gradient of 20K/mm is considered to be high.

So far, only the limit of stability has been estimated. Nothing has been said about the
form and scale of the perturbations which will develop if the interface is unstable.

Table 3.22 MINIMUM STABILISING TEMPERATURE GRADIENT (K/mm)
AS A FUNCTION OF PHASE DIAGRAM PARA METERS
(D = 0.005mm?2/s, V = 0.0lmm/s, m = -10K/wt%)

Colwt %)
k 10 1 0.01
0.5 200 20 0.2
0.1 1800 180 1.8

§ Note that an exact interface stability analysis
leads to a slightly modified criterion (appendix 6).
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Information concerning the dimensions of the initial, perturbed morphology is very
important because this will influence the spacing of the resultant growth
morphologies. However, it must be remembered that the morphology which initially
develops at the limit of stability is usually only a transient structure which disappears
once the steady-state cellular or dendritic morphology is established (see for

example, figure 4.3).

3.4 Perturbation Analyses

A drawback of the constitutional undercooling criterion is that it ignores the effect
of the surface tension of the interface. It is reasonable to suppose that the latter
should have a marked influence upon interface stability. In order to investigate this
possibility, and to learn more about the morphological changes occurring near to the
limit of stability, it is necessary to suppose that the interface has already been
slightly disturbed and to study its development under the constraints of diffusion and
capillarity. More details of this procedure are presented in appendix 6, and the
present discussion is intended merely to point out some of the physical principles

involved.

Figure 3.6: INTERFACE PERTURBATIONS AT A SOLID/LIQUID INTERFACE.
The existence of a zone of constitutional undercooling implies that a driving force
for a change in the morphology is available, but gives no indication of the scale of
the morphology which will appear. Experimental observation shows that the initial
form of the new morphology is approximately sinusoidal. Perturbation analysis
perinits the calculation of the wavelength of the instabilities which develop. The
result is of great importance in the theory of dendrite and eutectic growth.
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Firstly, it is assumed for simplicity that the purely mathematical perturbations (see
figure 3.6), which have an infinitesimal amplitude, do not affect the thermal or
solutal diffusion fields. The perturbed interface can be described by a simple sine

function:
z = €sinfwy] [3.18]

where € is the amplitude, and w(=27/\) is the wave number. The temperature, T*,
of the interface can be deduced from the assumption of local equilibrium:

T* = Tg + mC¥ - Tk [3.17]

f
This equation states that the difference between the melting point, Tp and the
interface temperature, T*, is equal to the sum of the temperature differences due to
the local interface composition and local interface curvature. Here, any temperature
difference needed to drive atomic processes has been neglected. This is a reasonable
assumption in the case of metals and other materials having a low entropy of fusion.
Taking just two points, at the tips(t) and depressions(d) of the interface and
calculating the temperature difference gives:
Ty = Tg=m(C - Cy - K, -KY (3.18]

The curvatures at tips and depressions which are not too accentuated can be
determined from the second derivative of the function which describes the interface

shape (equation 3.16) at y = N/4 and 3A /4:

Ky = -Kg = 47,°€ {3.19]
X
(Note that K has the opposite sign to that which arises from the mathematical
definition - equation 1.4). Since it is assumed that the temperature and concentration
fields are unaffected by the presence of a very small perturbation, the temperature
and concentration differences between the tips and depressions can be found from the

gradients existing at the originally planar interface. Thus:

T, -Ty=2€G [3.20]

t

and

Cy-Cy=2€G, [3.21]

t
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Substituting equations 3.19 to 3.21 into equation 3.18 leads to:

Ai = 2m,/ % 13.221

where ¢ is the degree of constitutional undercooling as defined in equation 3.12. The
wavelength, N, (given by equation3.22), defines a eritical perturbation which
matches both the thermal and solutal diffusion fields. In this case, the wave-form will
be stationary with respect to the unperturbed interface. That is, neither the tip nor
the depression will grow.

In order to obtain a relationship between the time dependence of € and )\, one can
simplify equation A6.3 by assuming that the solid solubility in the alloy is essentially
zero. Thus, k is approximately equal to zero and p is approximately equal to unity.
Moreover, the differences in the thermal gradients in the liquid and solid, and the

effect of latent heat, can be neglected:

Mime

= (L -V Cw? —
(mGC)(b D)(wI‘ G + mGe) (3.23)

where €é=d€/dt. This function (€/€ - N) is plotted in figure 3.7 for an Al-Cu alloy,
and exhibits a characteristic maximum. At A values below the maximum, the
perturbations develop less quickly or disappear (€<0) due to the effect of the high
curvature. At A values above the maximum, the perturbations develop less quickly
due to diffusion limitations. The wavelength, )\i, describes the perturbed
morphology which is at the limit of stability (€ =0) under conditions of constitutional
undercooling. Upon setting equation 3.23 equal to zero and noting that the first of the
three terms on the right-hand-side of the equation is not zero, the second term gives,

upon substituting for b (see list of sy mbols):
A=

The third term gives:
Wl = ch -G=¢

ors

A= zw,\/_g

This is exactly the same as equation 3.22 which was derived above using a much
simpler method. The term, F/d), is the ratio of the capillarity forece to the driving
Www.irangsrg]wavad.com
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force for instability. If ¢ tends to zero (the limit of constitutional undercooling), the
minimum unstable wavelength approaches infinity. This is to be expeected since, at
the limit, only the planar interface should be observed. On the other hand, far from

the limit of constitutional undercooling in the unstable regime:

AT,V
G <€mGg = —IT)O— (3.24]

Thus, the wavelength becomes, for V3 GD/ ATO:

A=, | BL (3.25]

The latter expression reveals that the wavelength of the unstable morphology is
proportional to the geometric mean of a diffusion length (D/V) and a capillarity
length (F/ATO). Increasing D or F, and decreasing V or ATo will increase the

minimum unstable wavelength.

160

80 unstable

e/e{s)

- 80 stable

-160

1 10 102 103
Apm)

Figure 3.7 RATE OF DEVELOPMENT OF A PERTURBATION AT A
CONSTITUTIONALLY UNDERCOOLED INTERFACE (Al-2wt%Cu, V=0.1mm/s,
G =10K/mm). The parameter, €/€, describes the relative rate of development of
the amplitude of a small sinusoidal perturbation. At very short wavelengths, the
value of this parameter is negative due to curvature damping and the perturbation
will tend to disappear (figure 3.1b). At wavelengths of )\i and above, the
sinusoidal shape will become more accentuated (instability - figure 3.1a). The
wavelength having the highest rate of development is likely to become dominant.
The reason for the tendency to stability at high A-values is the difficulty of
diffusional mass transfer over large distances. When the interface is completely
stable, the curve will remain below the €/€ =0 line for all wavelengths. This
implies disappearance of perturbations having any of these wavelengths
(appendix 6).
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EXERCISES

3.1 - A solid/liquid interface becomes unstable when relation 3.1 (3.9) is obeyed in
the case of a pure metal (alloy). Show that relation 3.l is implied by

relation 3.9. Discuss the differences.

3.2~ Indicate why the constitutional undercooling criterion cannot yield the

wavelength of the perturbed interface resulting from instability.

3.3 - Discuss the advantage of the Bridgman method (figure l.4a), over

conventional casting processes (figure 1.4b), with respect to the control of

interface stability.
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3.4 -

3.5 -

3.6 -

3.7 -

3.8 -

3.9 -

3.10 -

Determine the phase diagram froin the information that the solute
distribution ahead of the planar solid/liquid interface of an Al-Cu alloy has
been found to be described by:

C,Iwt%]=2(1 +[0.86/0.14)exp[-Vz/D))
under steady-state conditions. It has also been determined that the interface
temperature is 624°, and it is known that the melting point of Al is 660°C.
Give the values of k, m, ATO, T, , and ACO.

What is the limit of stability, G/V, of the above alloy if it is given that
D=3x10em?2/s?

Calculate the heat-flux required to produce a value of G which is sufficient

to stabilise the planar front in question 3.5 at a growth rate, V, of 10em/h.

By analogy with figure 3.4, draw a disgram for k>l and discuss the
constitutional undercooling criterion for this situation. Point out differences

between this case and the case where k<l.

Calculate C T*, and the minimum value of G required to stabilise the
planar interface of a Cu-10wt%Ni and an Fe-0.01wt%S (sce exercise 1.6)
alloy during directional growth at a rate of 0.0lmm/s. Plot the solute
concentration in the boundary layer existing in each case. (See appendix 12
for the data required.)

Determine the difference between the critical G/Vratio estimated
according to the constitutional undercooling criterion and that estimated
according to the Mullins-Sekerka criterion, for Al-2wt%Cu alloy (see

appe ndix 6).

Calculate the ratio, )\m/)\i’ for conditions of high constitutional
undercooling and constant V and G values. Here, )\m is the wavelength
which corresponds to the maximum in figure 3.7. Note that b in
equation 3.23 is a function of w and, in appendix 6, is defined as: b = (V/2D) +

[(v/2D)2 + w?]. Under certain conditions, this can be simplified by
comparing the relative magnitudes of V/2D and w. In order to estimate the
value of ), use equation 3.25. Doecs the value of )\m/)\i depend upon

the composition of the alloy?
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3.11 -

312 -

Imagine that an experiment is carried out, on the alloy of question 3.4, in
which the specimen is solidified using the Bridgman method with a
temperature gradient of G=10K/mm and is maintained at its limit of
stability until steady-state conditions are established. The growth rate is
then doubled without changing the value of G. Calculate the minimum, and
the most probable, wavelength which the resultant perturbation is likely to

have.

For the case of pure Al at an undercooling of 1K, determine the order of
magnitude of the radius of a growing sphere (R = )\i) at which the
spherical crystal will become unstable when growing in its undercooled melt.
Assume for the purpose of calculating G that the steady-state solution for

the temperature field around a sphere is applicable (appendix 2).
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CHAPTER FOUR

SOLIDIFICATION MICROSTRUCTURE:
CELLS AND DENDRITES

Nearly all of the solidification microstructures which can be exhibited by a pure
metal or an alloy can be divided into two groups: single-phase primary crystals and
polyphase structures. The most important growth form, and the one to be discussed in
this chapter, is the tree-like primary crystal, i.e.the dendrite. Polyphase structures
(eutectics) will be deseribed in the next chapter.

As shown in chapter 1, dendrites, eutectics, or combinations of these, make up the
grains of any metallic microstructure after solidification. The growth of both
morphologies can be described by analogous theoretical models, the development of
which comprises two steps:
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1 - derivation of an equation which describes the general relationship between ti.

scale of the microstructure, the undercooling, and the growth rate,

2 - choice of a criterion which permits the definition of an unique relationship
between the scale of the microstructure and the undercooling (in the case of

equiaxed growth), or the growth rate (in the case of directional growth)

With regard to the first part of the problem, it is necessary to determine an
expression for the heat- and/or solute- distribution and to take account of the effects
of capillarity. In the absence of a suitable non-equilibrium thermodynamic criterion,

step 2 above can be satisfied by using one of two alternative growth criteria. These

are:

i- growth at the extremum =~ j.e. at the maximum growth rate or minimum
undercooling. This assumption can be justified on the basis of non-equilibrium
thermodynamic concepts such as minimum entropy production.

it - growth at the limit of morphological stability. In the case of dendrite growth,

use of this criterion leads to better agreement between theory and experiment.

4.1 Constrained and Unconstrained Growth

The situation in which the heat flow is opposite to the growth direction
(i.e. directional or columnar solidification - figures 1.7a,c and 4.1a) is often referred
to as being constrained growth. That is, the rate of advance of the isotherms

constrains the dendrites (which in this situation are only found in alloy solidification)

to grow at a given velocity. This forces them to adopt the corresponding tip
undercooling. The grain boundaries are parallel to the primary dendrite axes (trunks)
and are continuous along the length of the solid. Each dendrite forms low-angle
boundaries with its neighbours and many trunks, formed by repeated branching,
together make up one grain (figure 4.2).

When the heat flows from the crystal into the melt (equiaxed solidification -

figure 1.7b,d and 4.1e), the dendrites can grow freely, in pure materials and alloys, as

rapidly as the imposed undercooling permits. The dendrites grow in a radial fashion
until they impinge upon dendrites originating from other nuclei, and the grain
boundaries form a continuous network throughout the solid (figure 1.9).
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In the case of directional growth, most of the dendrites are ar :d parallel to eact
other and a characteristic trunk spacing ()\1) can be defined. In the case ol

equiaxed solidification, each dendrite forms a grain and the primary spacing, )\1, it

usually equal to the grain diameter. A secondary arm spacing, )\2, can be defince

for both columnar and equiaxed dendrites.

Figure 4.1: THERMAL FIELDS AND COOLING CURVES OF ALLOY DENDRITES.
The upper part of the figure corresponds to the lower part of figure 1.7 with
superimposed liquidus temperatures (broken lines). The case of directional
(columnar) growth is indicated in diagram (a) and that of equiaxed growth ir
diagram(c). If a thermocouple is placed at a fixed position in the melt anc
overgrown by the dendrites, different cooling curves will be recorded for
directional growth (b) and equiaxed growth (d). This difference is essentially due tc
nucleation in the case of equiaxed solidification. Due to microsegregatior
(chapter 6) some eutectic will usually form in the last stages of solidification (i.e
at To). Note that, in the case of directional growth, the crystals are in contac
with the mould and heat will be conducted through them in a direction which i
paralle] and opposite to that of their growth. Therefore, the melt is the hottes
part of the system. In the case of equiaxed growth, the heat produced by
solidification must be transported through the melt. Thus, in this case, the
crystals are the hottest part and the heat flux, ¢, is radial and in the sam:
direction as that of growth. The local solidification time, tf, is the elapsed tim:
between the beginning and the end of solidification at a fixed point in the system
i.e. from the tip to the root of the dendrite.
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Pigure 4.22 FORMATION OF COLUMNAR AND EQUIAXED DENDRITIC
MICROSTRUCTURES. Initial competition of crystals nucleated at random at the
mould wall, and their growth into the liquid, leads to grain selection. In cubic
metals, columnar grains having one [001] axis close to the heat flux direction
ultimately overgrow the others. Note that, in this section, differences in the
rotation of the columnar grains about their growth exis is not visible. Large
orientation differences are accommodated at high-angle grain boundaries.
Branching of the dendrites leads to the creation of new trunks which are
crystallographically related to the initial primary trunk and form a grain. The
transition from columnar to equiaxed growth occurs when the melt has lost its
superheat, becoming slightly undercooled, and detached dendrite arms growing in
the melt form a barrier ahead of the columnar zone. (Compare with figure 1.6.)

4.2 Morphology and Crystallography of Dendrites

Ihe formation of & dendrite begins with the breakdown of an unstable planar
It;lidlliquid interface. Perturbations are amplified until a marked difference in
growth of the tips and depressions of the perturbed interface has occurred. As the tip
can also reject solute in the lateral direction, it will tend to grow more rapidly than a
depression, which tends to accumulate the excess solute rejected by the tips.
Therefore, the form of the perturbation is no longer sinusoidal, but adopts the form
af cells (figured4.3). If the growth conditions are such as to lead to dendrite
formation, the cells will rapidly change to dendrites, which exhibit secondary arms
and crystallographically governed growth directions. Cell and primary dendrite
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spacings are much larger than the wavelength of the original perturbation which
initiates the corresponding growth morphology (figure 4.3). 1t is important to note
that cells can only appear during the directional growth of alloys. For instance, cells
can grow under conditions such as those indicated in figure 1.7c. In other cases

(figures1.7b,d), only dendrites will be observed. Figure 4.4 summarises the

C celis

pertur-
balions

Figure 4.3: BREAKDOWN OF A PLANE SOLID/LIQUID INTERFACE TO GIVE
CELLS. The development of perturbations at the constitutionally undercooled
solid/liquid interface is only a transient phenomenon. The tips of the perturbations
can readily reject solute while the depressed parts of the interface accumulate
solute and advance much more slowly. (The effect is rather like pushing ones
flattened hand through a layer of sand in a direction which is parallel to the line
of the fingers - the sand piles up more rapidly between the splayed fingers than at
the finger tips.) The initial wavelength is too small for further rapid growth to
oceur, and the final result is the formation of a cellular structure. Note that the
wavelength has approximately doubled between the initial perturbation and the
final cells. Also, the spacing between the cells is not constant. The initial cellular
morphology can adjust itself to give a more optimum growth form via the
cessation of growth of some cells (B) in order to decrease their number or by the
division of celis in order to increase the number present. The division of cells is
not shown here, but it resembles the change at point A, with two branches
continuing to grow. Furthermore, the larger centre cells(C) have slightly
perturbed surfaces and this suggests that, in the intercellular liquid, some driving
force remains for further morphological change which might possibly lead to
dendrite formation. When the driving force due to the temperature gradient
dif ference is large, i.e. large constitutional undercooling, dendrites form instead
of the cells shown.
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differences between cells, dendritic cells, and dendrites. Cells are usually
ellipsoid-like crystals which grow anti-parallel to the heat flux direction. They grow
under conditions which are close to the limit of constitutional undercooling of the
eorresponding planar interface. On the other hand, dendrites are crystalline forms
which grow far from the limit of stability of the plane front and adopt an orientation
which is as close as possible to the heat flux direction or opposite to it, but follows
one of the preferred growth axes. These directions are crystallographically
determined (table 4.1). Equiaxed dendrites grow along all of the available preferred
directions when the heat extraction is isotropic. In cubic crystals, the six [001] axes
form the trunks and therefore the ecrystal orientation can easily be determined. In the
case of a directionally solidified dendritic monocrystal (e.g. & turbine blade), all of
the dendrites composing the monogreain are aligned (figure 4.5), leading to improved

properties.

Figure 4.4 CELLS, DENDRITIC CELLS, AND DENDRITES. During directional
growth in a positive temperature gradient, and only under those conditions, cells
can exist as a stable growth form (a). However, intercellular instability such as
that visible in figure 4.3 may lead to dendritic cell formation (b). The asymmetry
of the form may be caused by an asymmetry of the thermal field. Dendrites will
be particularly common in conventional castings and are characterised by growth
of the trunks and branches along preferred crystal orientations such as [001] in
cuble crystals (c). Due to the anisotropy of properties such as the solid/liquid
intéeface energy and the growth kinetics, dendrites will grow in that preferred
erystallographic direction which is closest to the heat flow direction, whereas
cells grow with their axes parallel to the heat flow direction without regard to the
erystal orientation. In the above figure, all three of the morphologies have the
same crystallographic orientation.
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Table 4.1: PREFERRED GROWTH DIRECTIONS
OF DENDRITES OF VARIOUS MATERIALS

Structure Dendrite Orientation Example

face-centred cubic <100> Al

body-centred cubic <100> delta-Fe

body-centred tetragonal <119> Sn

hexagonal close-packed <1010> H9O (snow)
" <0001> Co178my

Figure 4.5 TRANSVERSE SECTION OF A MONOCRYSTALLINE GAS-TURBINE
BLADE. In an alloy, the last (interdendritie) liquid to solidify always has a
different composition compared to that of the first erystals (dendrite trunks) to
form. Therefore, the dendritic structure can be revealed in a casting due to
variations in etching behaviour. This is seen in the above transverse section of a
directionally solidified monocrystalline turbine blade. The orientation of the
dendrite trunks is parallel to the blade axis (and perpendicular to the plane of this
section). The absence of high-angle grain boundaries improves the
high-temperature strength and fatigue behaviour of superalloy castings used in
jet-aircraft. The formation of such a monoerystal can be understood with the aid
of figure 4.2. During the initial stages of growth, when a columnar zone has
progressed to some distance from a chill plate, the grains enter a restriction
placed in the path of the growing crystals. As a result, only one grain can continue
to grow and form the blade. This is the principle used in alloy single-crystal
casting. (Photograph - Pratt and Whitney).

If a single dendrite could be extracted from the columnar zone of a casting during
growth, it would resemble the one depicted schematically in figure 4.6. Behind a short
paraboloid tip region, which often constitutes less than 1% of the length of the whole
dendrite, perturbations appear on the initially smooth needle as in the case of the
breakdown of a planar interface. These perturbations grow and form branches in the
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four [001] directions which are perpendicular to the trunk. if the primary spacing is
sufficiently great, these cell-like secondary branches will develop into dendritic-type
branches and lead to the formation of tertiary and higher-order arms. When the tips
of the branches encounter the diffusion field of the branches of the neighbouring
dendrite, they will stop growing and begin to ripen and thicken. Thus, the final
secondary spacing will be very different to the initial one. Compare the upper and
lower parts of figure 4.6. The final value of )\2 is largely determined by the
contact time between the branches and the liquid. This period is known as the local
solidification time, tg, and is given by the time required for a thermocouple placed
at a fixed point to pass from the tip to the root of the growing dendrite (figure 4.1).

4.3 Diffusion Field at the Tip of a Needle-Like Crystal

The growth rate, as well as the dendrite morphology or spacing, are all largely
dependent upon the behaviour of the tip region. During the growth of the tip, either
heat (in the case of pure metals) or heat and solute (in alloys) are rejected
(figure 4.7). These diffusion processes are driven by gradients in the liquid, and the
latter are in turn due to differences in temperature (A'[‘t) and concentration
(ATc) ahead of the growing crystal. The concentration difference can be converted
into a liquidus temperature difference via the phase diagram, as shown in figure 3.4,
After adding the temperature difference, at the solid/liquid interface, caused by the
curvature of the tip (AT[_), the coupling condition (see figure A7.1) can be written:

AT = AT, + AT + AT, 14.1]

In this equation, the possibility of kinetic undercooling has been neglected. This is a
reasonable assumption in the case of materials, such as metals, which exhibit a low
entropy of melting.

The current state of knowledge concerning the equiaxed dendritic growth of pure

substances has been reviewed by Huang and Glicksman (1981). On the other hand, in
the theory of the equiaxed dendritic growth of alloys, the problem of coupled heat-
and mass-transport must be solved (Lipton et a}, 1984 - appendix 8). In the case of the
directional growth of alloy dendrites, the situation is somewhat simpler because, due

to the imposed temperature gradient, the latent heat is transported through the solid
while solute is rejected ahead of the tips. In this case, only mass diffusion need be
considered. This permits an approximate solution of the problem of alloy dendrite
growth in the columnar zone. This case is of great practical importance and will be
considered here in greater detaiji.
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Figure 4.6: GROWING DENDRITE TIP AND DENDRITE ROOT IN COLUMNAR
GROWTH. Depending upon the directional growth conditions, the dendrite (from
the Greek, dendros =tree) will develop arms of various orders. A dendritic form is
usually characterised in terms of the primary (dendrite trunk) spacing, Ay, and
the secondary (dendrite arm) spacing, )\2. Tertiary arms are also often observed
close to the tip of the dendrite. 1t is important to note that the value of Aj
measured in the solidified microstructure is the same as that existing during
growth, whereas the secondary spacing is enormously increased due to the long
contact time between the highly-curved, branched structure and the melt. The
ripening process not only modifies the initial wavelength of the secondary
perturbations, )\2', to give the spacing which is finally observed, )\2, but also
often causes dissolution of the tertiary or higher order arms. The two figures are
drawn at the same scale, refer to the same dendrite, and illustrate morphologies
which exist at the same time but which are widely separated along the trunk
length (by about 100Ay).
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Figure 4.7 CONCENTRATION AND TEMPERATURE F1ELDS OF DENDRITES.
These diagrams illustrate the heat and mass diffusion fields existing along the
dendrite axis, and correspond to various possible cases (figure 1.7 and table 3.1). In
pure substances (a,b), there is no solute rejection and dendrites can form only in
an undercooled melt. In the latter case (b), the heat rejection occurring during
growth sets up a negative temperature gradient ahead of the interface. This leads
to the establishment of the necessary conditions for the instability of thermal
dendrites. In the case of alloys (e,d), dendrites can form irrespective of the
temperature gradient if the interface is constitutionally unstable. Iif G is greater
than zero(e), the latent heat is transported, together with the unidirectional heat
flux, into the solid. To a first approximation, therefore, solute rejection alone
needs to be considered in the case of directionally solidified (solutal) dendrites.
Equiaxed dendrites in alloys (d) reject both solute and heat.

The rejection of solute changes the temperature of the solid/liguid interface at the
tip (figure 4.8). The ratio of the change in concentration at the tip, AC, to the
equilibrium concentration difference, AC* (=C} [1 -k]: length of the tie-line at the
temperature of the tip) is known as the supersaturation, . This supersaturation (or
the related undercooling, ATc) represents the driving force for the diffusion of

solute at the dendrite tip in an alloy. In principal, when the supersaturation is equal

to zero the transformation rate will be zero. With increasing supersaturation, the

growth rate of the new phase (the solid) will increase(§). The rejection rate is

§ Similar arguments apply to thermal
dendrites, as shown in appendix 7.
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influenced by the shape of the tip and, at the same time, the form of the tip is
affected by the distribution of the rejected heat or solute. This interaction makes the

development of an exact theory extremely complex. However, to a first

Q
AC/AC*
bt
T (Ca) C'; - --'§ AT
<
' AC |
c, cf

Figure 4.8: SOLUTE REJECTION AT THE TIP OF AN ISOLATED CELL OR
DENDRITE. During directional solidification, where the isotherms move due to
the imposed heat flux, a needle-like crystal can grow more quickly than a flat
interface due to the more efficient solute redistribution: B-atoms rejected at the
interface of a thin needle can diffuse outwards into a large volume of liquid. Thus,
the solutal diffusion boundary layer, 5c, of the needle is smaller than that of a
planar interface (0, octip radius). Also, because the interface is not planar, the
solid formed does not have the same composition as the original liquid (as it does
in the case of steady-state plane-front growth - figure 3.4). When a positive
gradient is imposed, as in directional solidification, heat is extracted through the
solid. 1f, furthermore, thermal diffusion is rapid (as in metals) the form of the
isotherms will be affected only slightly by the interface morphology. Thus, in the
case of directionally solidifying dendrites, only solute diffusion will be the
limiting factor. The growth temperature, T*, of the tip will define a solute
undercooling, &T,, or, via the phase diagram, the degree of supersaturation,

= AC/AC*, The determination of as a function of the other parameters
requires the solution of the differential equation which describes the solute
distribution. The simplest solution is obtained when the tip morphology is supposed
to be hemispherical. Instead, the real form of the dendrite tip is closely
represented by a paraboloid of revolution.
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approximation the dendritic shape can be described satisfactorily as being a
paraboloid of revolution as was suggested originally by Papapetrou(1935). The
mathematical solution of the diffusion problem for a paraboloid was derived by
Ivantsov (1947) who deduced the following relationship between the supersaturation,

ﬂ, the dendrite tip radius, R, and the growth rate, V:

Q= 1p) 4.21
where:

I(P) = Pexp(P)E (P) (4.3)

and the Péclet number, P = VR/2D = R/ 60' Here, E, is the exponential integral
function (equation A7.13b, figure A1.2). The form of the lvantsov function, I(P), is
shown in figure A7.4. 1t is interesting to note that equation 4.3 can be approximated

by a continued fraction of the type (Abramowitz & Stegun, 1965):

P)=__P

If only the first term is taken, one obtains:

I(p) =P [4.4]
and insertion of this approximation into equation 4.2 gives:

Q=p (4.5

This is the simple solution obtained for the diffusion field existing around a
hemispherical cap (equation A7.11), and will be used in the following discussion
because it permits a clearer insight into the physics of dendrite growth than does the
more complicated relationship of equation 4.3. Nevertheless, it should be kept in
mind that equation 4.3 or more complicated ones (Trivedi, 1970) can easily be used in
numerical calculations and this will then lead to more exact solutions. Equation 4.5
simply states that the response of the system characterised by the Péclet number is
proportional to the driving force defined by the supersaturation. Since P is the ratio
of the tip radius, R, to the diffusion length, 2D/V (figure A2.5), a large value of }
leads to a diffusion length which is small in comparison with R.
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The solution to the diffusion problem, described by equation4.5, is seen i dare 4.9,
for an alioy dendrite (Ai-2wt%Cu under directional solidification conditions), as a
straight line at an angle of 45° in logarithmic coordinates. This indicates that, for a
given -value, R and V are not defined unambiguously. Thus, solution of the dif fusion
problem does not indicate whether the dendrite will grow quickly or slowly, but
merely relates the sharpness of the tip to its rate of propagation.

In this respect, it is often useful to use the analogy of a body moving through a fluid,
where blunt shapes have a higher hydrodynamic resistance. The diffusion boundary
layer around the tip is proportional to the tip radius. Because the gradient of C is
inversely proportional to the boundary layer thickness, a sharper tip has a steeper
gradient. A sharper tip can grow more rapidly because it can reject solute (or heat in
the case of a thermal dendrite) more efficiently; the flux being proportional to the
gradient. iHowever, there is a limit, to the possible sharpness of the dendrite tip,
which is represented by the critical radius of nucleation, R° =r° (table 2.1). At r°, the
growth rate is zero and therefore all of the supersaturation is used to create

curvature and none remains to drive diffusive processes (figure 4.9).

4.4 QOperating Point of the Needle Crystal - Tip Radius

The overall growth curve of a needle-like erystal, which reflects the sum of the
capillarity and dif fusion effects, follows the solid curve in figure 4.9, and exhibits a
maximuin close to R°. Until recently, this maximum, Re, was considered to be the
radius at which the dendrite would actually grow. This so-called extremum criterion
permitted the establishment of an unique solution, to the otherwise indeterminate
growth prublem, by setting the first derivative of the equation of growth equal to
zero.

Recently, Langer and Miller-Krumbhaar (1977) have argued that a dendrite tip having
a small radius tends to increase its radius due to the development of side-branches
which interact with the tip. On the other hand, a large tip radius will tend to
decrease due to the development of instabilities. The result is a growth rate which is
assoclated with a tip having a size at the limit of stability. Thus, one can then

immediately deterinine the expected tip radius by setting:

Rg = )\i [4.6]

where )‘i is the shortest wavelength perturbation which would cause the dendrite
tip to undergo morphological instability. To a first approximation, the wavelength of
the favoured perturbation at a planar interface can be used. It js deseribed by
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equation 3.22 and, for the condition G<mG  (which is true for dendrites) it is given
by equation 3.25:

)\i =27+ 8-s (4.7

This wavelength is the geometric mean of a diffusion length, 8(=D/v) and a capillary
length, s(= P/ATO). In figure 4.9, the value at which R is at the limit of
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Figure 4.9: UNOPTIMISED GROWTH RATE OF A HEMISPHERICAL NEEDLE
FOR {2 = CONSTANT. For a hemispherical needle crystal, the solution of the
diffusion equation shows that the supersaturation, Q, is equal to the ratio of the
tip radius to the diffusion boundary layer. This dimensionless ratio is known as the
Péclet number, P(=RV/2D). For a given supersaturation, the product, RV, is
therefore constant and means that either a dendrite with a small radius will grow
rapidly or one with a large radius will grow slowly (line at 45° in the figure). At
small R-values, the diffusion limit is cut by the capillarity limit. The minimum
radius, RO, is given by the critical radius of nucleation, r°(table 2.1). A
maximum value of V therefore exists. Because it was reasoned that the
fastest-growing dendrites would dominate steady-state growth, it was previously
assumed that the radius chosen by the real substance wouid be the one which gave
the highest growth rate (value at extremum, R=Rg). However, experiment
indicates that the radius of curvature of the dendrite is approximately equal to
the lowest wavelength perturbation of the tip, which is close to )‘i (figure 3.7).
This is referred to as growth at the limit of stability (R = Rg)-
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morphological stability is also indicated. It can be seen that this operating point is
situated some distance from the extremum, and leads to the prediction of larger
R-values. This prediction is consistent with experimental measurements. Since RS
is considerably greater than Re, the effect of curvature on the growth curve can be
neglected. (The point, R=)\i, is situated upon the fuliy diffusion-limited curve,
therefore A’I‘r in equation4.l is almost zero.) The curvature then exerts its
influence only through the )\i—value, via the capillary length. Figure 4.10 illustrates
how one obtains an unique solution by using the extremum criterion (dash-dot line) or
with the aid of equations 4.5 and 4.6 (solid line). In this way, £ is eliminated from the
V-R-relationship. The final result for constrained growth is given in figure 4.11 for
growth rates, V>Vc, i.e. above the limit of constitutional undercooling of the plane

front.

\{:}(R,) Q3 >Q2 >Q,

lgv —=

Figure 4.10: GROWTH RATE AS A FUNCTION OF TIP RADIUS FOR QPTIMUM
GROWTH. In this figure, it is demonstrated how, using the optimisation ecriterion,
V=f(Rg), the observed V-R-values are obtained as a function of €. That is, for
a given value of V, a given value of R is found. The unoptimised growth rate, V, of
figure 4.9 is here shown as a function of the tip radius, R, for various
supersaturations, 93>Qz>91. Two optimisation criteria are used here.
One is that tip growth occurs at the extremum (dotted line) and the other is that
it occurs at the limit of stability (solid line). The optimised curve deduced from
the stability ecriterion (solid line) corresponds to a portion of the solid lines in

figure 4.11, where the coordinates have been inverted.
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In order to wunderstand these relationships 1ore fully, the calculation
(Kurz & Fisher 1981) of the tip radius of a dendrite growing under conditions of
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Figure 4,11: OPTIMISED DENDRITE TIP RADIUS AS A FUNCTION OF GROWTH
RATE. If it is assumed that, in directional solidification, growth occurs with a tip
radius which is equal to the minimum instability wavelength, )\i, curves such as
those above can be generated, They indicate the magnitude of the dendrite tip
radius for a given growth rate. Here, the .2avy lines are given by the simple
model described in the text (equation 4.11), while the dotted lines are predicted by
a more detailed analysis (Trivedi, 1980). Note the marked effect of the
temperature gradient upon the radius of curvature at low growth rates
(constrained growth regime or cellular regime e.g. for G=0.1K/mm between
v=10"% and V=10"5mm/s). A sufficiently high gradient, or a sufficiently low
growth rate (Vo=GD/AT,) will lead to the re-establishment of a planar
interface (i.e. a 'dendrite' with an infinite radius of curvature). The aspproximate
analysis does not quite succeed in showing this, because of the simplified
assumptions made. When the temperature gradient is less than, or equal to Zero,
no cells are formed and the steep curves usually observed at low values of V do
not occur.
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directional solidification (§) will be developed in more detail. This is the solutal case

with an imposed temperature field, as in figures4.7 and 4.8. The minimum
wavelength of the instability of a planar interface is approximated by equation 3.22:

}\1=27r\/§

Using equation 4.6 gives:

- [ r
R =27 2 [4.8
]

where ¢ = ch - G. From a flux balance, in the z-axis direction at the dendrite tip

(equation 3.6), and knowing that, from the phase diagram (figure 4.8):

x = o
C 1- Qp [4.9]
(p = 1-k), one obtains for Gc:
Ge = —S0
¢ R_D [4.10]
2 Vp

This leads, together with equation 4.8, to:

2DGR2 + 872D’
V= (4.11]
R3pG - 2R2pCom + a7 2T'Rp

This cubic equation, which relates R to V and G for various alloys, is valid only for an
isolated hemispherical-tip needle growing into supersaturated liquid. 1t is plotted in
figure 4.11 for various values of G, and indicates the existence of two different
regimes when G=>0. At growth rates close to Vc (steep part of the curves) where

mainiy cellular growth is found. Equation 4.11 can be simplified to give:

R = 2D, 2mC,

> G [4.12]

while, at inediuin to high growth rates (dendritic regime), the corresponding

§ Note that directional solidification can be obtained by using a

Bridgman-type furnace (G and V independent) or by directional

casting (G and V coupled) - see exercise 1.9
Www.iranggnavad.com
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approximation to equation 4.11 is:

- oI
R =27 _Vk-A-To [4.13]

The degree of agreement with the more exact analysis (Trivedi [1980]) is reasonable
(figure 4.11).

The R-V relationship for isolated cells is therefore very different to that for isolated
dendrites. The tip concentration, which is important with regard to segregation, or
the tip temperature can easily be determined from the value of R (table 4.2). It is
seen (figures 4.12 and 4.13) that cells grow with much higher tip concentrations, and
consequently lower tip temperatures, than those usually encountered for dendrites
(when V<10mm/s). This is easily understood if it is realised that growth at the limit
of stability infers that the condition proposed by Burden and Hunt (1974) is valid. That

is:

ATt=Gv-—D

This equation expresses the fact that the cell tip, where ATt is used instead of the
ATo-value of a planar interface, is growing with a concentration gradient which
corresponds to equality between G and ch, i.e. at the limit of constitutional

undercooling (equation 3.15).

Table 4.2: DENDRITE GROWTH VARIABLES ACCORDING TO
THE APPROXIMATE SOLUTION OF EQUATION 4.11 (p.P < 1)

&~ L
Co 1 -pP
AT = ATg = mCo(l - —1— )

1 -pP
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The rapidiy increasing tip concentration or decreasing tip temperature of dendrites at
very high growth rates is due to the dominant capillarity term at small values of R.
The error involved in using equation 4.5 is quite large in this case since P is greater
than unity. Use of the more exact solution (figure 4.13) indicates a less rapid decrease
in tip temperature at high growth rates. I[n table 4.2, some related variables for the
approximate solution of problems arising in the directional growth of dendrites are

given.

Ve tor G 2 10!

Co/k g — — === = = =~ —~ — — = ———— - = - =~ —
Al - 2wt %Cu
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Figure 4.12: INTERFACE CONCENTRATION OF A HEMISPHERICAL NEEDLE
IN DIRECTIONAL GROWTH. From the radius of curvature predicted by
figure 4.11, the associated interface concentration can be derived. The blunt cell
tips existing close to the limit of constitutional undercooling, V., cannot easily
dissipate the solute rejected there and the tip concentration will therefore be
higher than that ahead of a sharp dendrite tip. If the temperature gradient is zero,
this will not occur as no cells are formed in this case. At very high growth rates,
the interface concentration in the liquid will again increase to high values due to
the increase in supersaturation necessary to drive the process. Again, at very high
growth rates a crystal with a supersaturation of unity will grow which has the
same composition, Co, 8s the alloy (the composition of the liquid is equal to
Co/k). Under these conditions, a planar solid/liquid interface will result as in
growth at low rates in a positive temperature gradient (grey regions). Note that
the composition of the solid is related to CF via the distribution coefficient, k.
The latter becomes a function of V at growth rates of the order of 100mm/s or
above.
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The tip radius would not be so important if it did not influence other morphological
parameters of the cell or dendrite. The theory presented here is a useful
approximation in the case of isolated needles. Dendrites can be regarded as being
isolated crystals, at least at their tips, but the applicability of this assumption to
cellular growth is limited since cells always grow with their tips close together

(R= )\l) and their diffusion fields overlap.

T (Co) P

646
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°
*;_ 638 10 = G(K/mm)
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10 1072 1 102
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Figure 4.13: INTERFACE TEMPERATURE OF A HEMISPHERICAL NEEDLE IN
DIRECTIONAL GROWTH. Use of the phase diagram and the assumption of the
existence of local equilibrium at the solid/liquid interface permit the calculation
of the temperature associated with the interface concentration (figure 4.12). At
high and low growth rates, the tip temperature reaches the solidus temperature.
In the low growth rate range, below the critical rate where the dendrite tip
temperature and solidus temperature are equal (grey area on the left-hand side),
the planar front is the more stable since it can grow at a higher temperature.
(This is another way of regarding the limit of constitutional undercooling). A
similar argument applies at high growth rates. As in figure 4.11, the broken curves
again) indicate the more exact behaviour described by the relationship of Trivedi
(1980).
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4.5 Primary Spacing of Dendrites after Directional Growth

The primary arm spacing is an important characteristic of columnar dendrites and has
a marked effect on the mechanical properties. On the other hand, in equiaxed growth
the primary spacing does not play the same role and a more important parameter is
the distance between the nuclei, or the grain size.

Returning to the primnary spacing in the columnar (directional) growth situation, it is
assumed that the cell or the dendrite envelope, representing the mean cross-section
of the trunk and branches, can be described approximately by an ellipse (figure 4.14).

The radius of curvature of the ellipse is given by:
2
T (4.14]

The semi-axis, b, is proportional to )‘1' where the proportionality constant depends
upon the geometrical arrangement of the dendrites. A hexagonal arrangement is
assumed in figure 4.14, where the last liquid is assumed to solidify at the centre of

Figure 4.14: ESTIMA'TION OF THE PRIMARY SPACING IN DIRECTIONAL
SOLIDIFICATION. In practical applications, the dendrite tip radius is not as
important a parameter as the primary spacing since it is almost impossible to
measure it directly. In order to estimate the primary spacing, the dendrites are
imagined to be elliptical in shape. The length of the major half-axis, a, of the
ellipse is equal to AT'/G. Here, AT is the difference between the tip temperature
and the melting point of the last interdendritic liquid. The primary spacing, )\1,
which is proportional to the minor half-axis, b, can be determined from simple
geometrical considerations. The factor, 0.58, arises from the assumption that the
dendrite trunk arrangement is hexagonal.
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gravity of the equilateral triangle formed by three densely packed dendrites. This
assumption leads to b= 0.58)\1.
The semi-axis length, a, is given by the difference between the tip temperature and

the root temperature, divided by the mean temperature gradient in the mushy zone:

AT, T*-T

8= G G

where, due to microsegregation, TS' is often equal to the eutectic temperature if
an eutectic exists in the system (chapter 6). Therefore, it can be assumed that the tip
radius and the length of the interdendritic liquid zone together determine the primary
spacing, due to purely geometrical require ments. From equation 4.14, one has )\l o

V(Ra), and:

A= 3‘50""'“ (4.15)

Substituting for R from equation 4.12 or 4.13 into equation 4.15 leads to two different
spacing equations for cells or dendrites, where >‘l is always directly related to AT'
(equation 4.15). Knowing that AT' is strongly dependent upon the tip temperature, T*,
a sharp decrease in T* at low and high V (figure 4.13) should cause )‘l to decrease
sharply as shown in figure 4.15. However, no firm experimental evidence exists to
show that this does in fact occur. Between these two limiting growth rates, cells will
follow a different relationship to that of dendrites. For the most important range of
dendritic growth, at medium to high V, the following equation can be obtained by
substituting equation 4.13 into equation 4.15 and assuming that, in this range,
AT'=ATO:

4.3(aT,DIM0-25

T k0.25y0.25+/G

1 {4.16]
This equation indicates that a variation in the growth rate has a smaller effect upon
)‘l than does & change in the temperature gradient. As in directional growth, the

cooling rate, 'i‘, is given by:
T = -Gv (4.17)

1t can be seen that )‘l for dendrites will not obey a simple relationship such as the

ones often proposed in the literature e.g.:

A = Ki"
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Although equation 4.16 gives only a qualitative description of )\l, due to the
simplified model used, it nevertheless indicates that G and V have a different
functional relationship to )\l; a conclusion which is also borne out by Hunt's
analysis (1979). Another interesting aspect of the present elliptic dendrite model is
that it permits the description of a planar, flattened cellular, elongated cellular, or

dendritic growth morphology (figure 4.15) with the use of only two geometrical

10% 1
£ 1
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<
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Figure 4.15: MORPHOLOGY, TIP RADIUS, AND SPACING OF CELLS AND
DENDRITES. According to the simple dendrite model, the tip radius decreases
from very large values at the limit of constitutional undercooling, Ve, to small
values at high growth rates (as in figure 4.11). Over the same range, the primary
spacing starts at zero (plane interface) crosses the R-V curve, and reaches zero
again at high growth rates. The corresponding interface structures are also shown
and vary from planar at growth rates less than Vg to blunt cells (R>)\1/2) or
well-developed cells (R<)\1/2) and to dendrites which become finer and finer
until they disappear at very high growth rates to give a planar interface again.
Note that this behaviour of A] has been derived for isolated cells and
dendrites. In reality, the interaction of the diffusion fields at the tips will change
the relationship for cells at low growth rates.
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parameters, a and b (§).
Once the primary spacing is established, it will not change during, or after,

solidification. This is not so for the secondary arms, which undergo a ripening process.

4.6 Secondary Spacing after Directional or Equiaxed Growth

As seen from figure 4.6, the secondary arms start very close to the tips. They appear
initially as a sinusoidal perturbation of the paraboloid. As in the case of a planar
solid/liquid interface which becomes unstable (figure 4.3), these perturbations grow,
become cell-like, are sometimes eliminated by their neighbours, and a number of
them finally become real secondary dendrites growing perpendicularly to the primary
trunk (in the case of a cubic crystal). These secondary arms, with their higher-order
branches, grow and eliminate each other as long as their length is less than )\1/2.
Once the diffusion fields of their tips come into contact with those of the branches
growing from the neighbouring dendrites, they stop growing. A ripening process
causes the highly-branched arms to change with time into coarser, less branched, and
more widely-spaced ones (figures 4.6 and 4.16).

Careful inspection of the photographs in figure 4.16 suggests that one possible
mechanism for the coarsening process is the melting of thinner secondary arms and
an increase in the diameter of the thicker branches. This process is analogous to
Ostwald ripening of precipitates. The process is depicted schematically in the upper
diagram of figure 4.16. Each time that a thin secondary arm melts, the local spacing
is doubled. The driving force for the ripening process is the difference in chemical
potential of two crystals with different interfacial energies (i.e. different
curvatures). As in the ripening of precipitates, the spacing of the branches, )\2, is

proportional to the cube root of time (equation A8.34);
~ 173
Ay = 5.5 (Mtg) [4.18]

with

cm
I'pDin ((—:‘L) )

M = [4.19]

m(l - k}Cqo - CM)

§ Very recently, Trivedi (1984) has published another model for

)\l

measurements made by Somboonsok et al (1984).
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m
where C; is often equal to C.
The value of M can easily vary between 1 and 10. However, because its effect on

)\2 is only proportional to the cube root, the differences will be relatively small
when compared with the inevitable scatter to be expected in the measurements. Such

Figure 4.16: ESTABLISHMENT OF THE SECONDARY DENDRITE ARM SPACING
IN EQUIAXED SOLIDIFICATION. In contrast to the primary spacing, the
secondary dendrite arm spacing, as measured in the solidified metal, is largely
determined by annealing processes occurring during growth of the dendrites
(figure 4.6). Due to a ripening phenomenon, smaller (higher curvature) features
disappear and ‘feed' the growth of the already larger features. The upper figures
illustrate the model assumed in caleulating the effect of these changes, while the
lower photographs show equiaxed cyclohexane dendrites (a)just after
solidification, and (b)20min later. In these photographs, the black areas
correspond to the solid phase and the white areas to the liquid phase. Note that
the primary spacing in an equiaxed structure is not well-defined and usually
corresponds to the mean grain diameter. [Photographs: K.A.Jackson, J.D.Hunt,
D.R.Uhlmann, T.P.Seward: Transactions of the Metallurgical Society of AIME 236
(1966) 149]
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experimental results are presented (figure 4.17) for the secondary spacing in an
Al-4.5wt % Cu alloy.

Measurement‘s of the secondary spacing observed in directionally solidified or
equiaxed structures give some indication of the local solidification conditions, and
can be helpful when cooling curves are unavailable.

In the case of directional solidification, the local solidification time is given by:

= P _ AT
tg = Ié'i"]% = Gv {4.20]
When there is no eutectic reaction in the system, the determination of AT' might be

difficult. In chapter 6, it is shown that one can obtain an approximate value in this

situation.
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Figure 4.17: SECONDARY SPACING AS A FUNCTION OF SOLIDIFICATION
TIME. The best-fit curve to the experimental points for Al-4.5wt%Cu alloy over a
wide range of solidification conditions shows that the secondary spacing varies
approximately as the cube root of the loecal solidification time. The latter is
defined as the time during which each arm is in contact with liquid (figure 4.1),
and is therefore a function of the growth rate, the temperature gradient, and the
alloy composition. The secondary spacing is important since, together with )\1,
this determines the spacing of precipitates or porosity and thus has a considerable
effect on the mechanical properties of as-solidified alloys (figure 1.2). [T.F.Bower,
H.D.Brody, M.C.Flemings: Transactions of the Metallurgical Society of AIME 236
(1966) 624}.
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Figure 4.18; SCHEMATIC SUMMARY OF SINGLE-PHASE SOLIDIFICATION
MORPHOLOGIES. This diagram summarises the various microstructures which
can be obtained using a typical alloy, with a melting range (ATy) of 50K, when
the imposed temperature gradient, G, or growth rate, V, are varied. Provided that
a unidirectional heat flow is imposed, the produet, GV, is equivalent to the cooling
rate, T, which controls the scale of the microstructures formed. The ratio, G/V,
largely determines the growth morphology. Moving from the lower left to the
upper right along the lines at 45° leads to a refinement of the structure without
changing the morphology (G/V = constant). Crossing these lines by passing from
the lower right to the upper left leads to changes in morphology (from planar, to
cellular, to dendritie, growth), and the scale of the microstructure remains
essentially the same (T = constant). The grey bands define the regions over which
one structure changes into another. The conditions required to produce
single—crystal turbine blades (figure 4.5) are those at the upper end of the thick
vertical line (DS=directional solidification). Processes which produce perfect
single crystals, such as those required for semiconductor-grade silicon preparation
are found at the bottom of the same vertical line. (For single erystal growth, all
but one of the crystals initially present must be eliminated.) In a conventional
casting, the growth conditions change with time approximately in the manner
indicated upon following the inclined arrow from right to left. Splat-cooling
conditions are found in the far upper-right region. At these rates, k will begin to

ity. .
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Figure 4.18 summarises the main points considered in this chapter. Thus, for one
altoy, G and V are the main variables which determine the form and scale of the
mierostructures found after solidification of a given alloy. Specifie G/V values (lines
and bands running from the bottom left to the upper right) represent a constancy of
microstructure (planar, cellular, columnar, and equiaxed dendritic). On the other
hand, the various G.V (=T) values (lines running from upper left to lower right)
indicate a constant scale for these structures (e.g. A 2). Thus, fine or coarse
dendrites can be produced when G and V can be changed independently (see the insets
in figure 4.18). Herein lays the value of the directional solidification (DS) method.
That is, structures can be tailored to some extent so as to have optimum properties,
as in the case of a turbine blade (figure 4.5). In a normal casting, G and V tend to be
interrelated via the heat flux and the thermal properties of the metal. In a casting,
therefore, only conditions close to the arrow in figure 4.18 can be exploited. When the
growth rate is below the limit of constitutional undercooling, Vc (equation 3.15),
plane front solidification is obtained and no solidification microstructure will
develop. Note, however, that solidification with a planar interface does not alone
ensure that a monocrystal will be obtained. To achieve this, elimination of all but one
grain is necessary-.

In castings there arises another important factor which will not be considered here.
This is convective flow, which ean markedly influence the transition from columnar
to equiaxed dendritic growth. Generally, the presence of strong convection will
decrease the length of the columnar dendritic zone and enhance equiaxed grain
formation. This is mainly due to the breaking-off of parts of dendrites, and has a
beneficial effeect upon the internal quality of castings. In the continuous casting of
steel, in particular, electromagnetic stirring has become a technologically important

means of controlling the solidification structures.
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4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

EXERCISES

What will happen when the angle of the dendrite trunk axis in figure 4.4c is at
exactly 45° to the heat flow direction? Sketeh a portion of such a dendrite

growing under these conditions.

A miecrostructure such as that in figure 4.3 is being formed by directional
solidification. The material is cubic and the cube axis is 20° away from the
axis of the cells. What will happen when the growth rate is markedly
increased? (Consider the transition from cells to dendrites depicted in

figure 4.4)

What does monocrystalline mean in the case of figure 4.5 (no concentration
variation in the solid, absence of low-angle boundaries, absence of high-angle

boundaries)? Compare with the columnar zone of a casting (figure 4.2).

Design a mould which is suitable for the production of a dendritic

monocrystalline casting, e.g. a gas-turbine blade.

Sketch a sequence of transverse sections of a dendrite which illustrates the
region between the tip and the root of the dendrite in figure 4.6.

In appendix 7, the solution (equation A7.10) for solute diffusion around a
hemispherical needle erystal is developed. Derive the equivalent solution for

the case of heat dif fusion (equation A7.12).

Imagine a dendrite tip which changes its radius during growth. What will
happen to the concentration field of this dendrite (figure4.8 where AT =
ATc) as the tip becomes sharper and sharper at a given growth rate. Note
that AT = ATc + AT[_ in directional solidification. Sketeh the
concentration profile for the case where (a) AT > AT, (b) AT = AT,
(e) AT < AT[_. Which situation corresponds to the critical nucleation radius?

Which dendrite grows and which melts?

Calculate the undercooling for the case of figure 4.9 which represents an
Al-2wt%Cu under directional solidification conditions. From the value of Ro

determine the Gibbs-Thomson parameter, I used.
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4.9

4.10

The unoptimised dendrite growth behaviour can be expressed as, V =f(R) (as in
figure 4.10) or as AT =g(R). Derive an equation for AT(R) on the basis of
equation A8.3. Indicate the range of R values within which diffusion or

capillarity is governing growth.

In figure 4.11, the results of Trivedi's more exact model, based upon the
Ivantsov solution, for directionally solidifying dendrites are compared with
those of the simple model derived in the present text. The discrepancy
between them is large at low and high growth rates. At both extremes, the
Péclet number becomes large (P greater than unity). Discover which of the
simplifications made is responsible for the unrealistic predictions of the simple
model. (Consider the low-V part of the curve, where the dendrite tip changes

to a plane front, and make use of figure A7.4).

Calculate the tip temperature (table4.2) of a dendritic growth front in

Al-2%Cu alloy when V=0.lmm/s and G=10K/mm. Determine )‘l’ )\2,

and the length of the mushy zone, assuming that G is constant in that region

and the melting point of the last liquid is Te. What is the value of the ratio,
1 ?

AT /ATO.

By using the lower limit, Co/k, instead of Cf’ in equation 4.19, show how
>\2 varies with Co in a given alloy system. For many systems, this

simplification is realistic.

In an Al-5wt%Si alloy ecasting, measurements of temperature and
microstructure gave the results below. Compare these values to the

theoretical ones and estimate the cooling rate.

ty(s) A, (pn)
43 4] £ 3
330 81 £13
615 93 +3

In experiments involving strong, uniform flow of the melt across the

solid/liquid interface (for example the electromagnetic stirring of steel during

continuous casting), it is observed that columnar dendrites are inelined in a

direction which is opposite to the flow direction. How would you explain this
Www.iran;gnavad.com
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4.15

observation? Consider the way in which the boundary layers around the

dendrite tip are changed. Would the same effect occur in pure metals?

stirring of the melt during solidification is an efficient method of promoting
the columnar-to-equiaxed transition in a casting. The reason for this transition
in stirred castings is that the melt becomes more rapidly cooled and, at the
same time, many dendrite branches are detached from the interface. With the
aid of figure 4.1, indicate the two limiting temperatures at which the melt

must be in order to make this transition possible.
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CHAPTER FIVE

SOLIDIFICATION MICROSTRUCTURE:
EUTECTIC AND PERITECTIC

As shown in chapter 4, the solid which forms during solidification can adopt various
morphological forms, and these can be present in a wide range of sizes. Dendrites
make up the bulk of the miecrostructure of most alloys, but a number of important
eutectic alloys are also used in practice. Eutectic morphologies are characterised by
the simultaneous growth of two (or more) phases from the liquid. Due to their
excellent casting behaviour, which is often similar to that of a pure metal, and the

advantageous composite properties exhibited by the solid, casting alloys are often of

near-eutectic composition.
Www.ira ngflnavad .com
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5.1 Regular and Irregular Eutectics

Due to the fact that they are composed of more than one phase, eutecties can exhibit
a wide variety of geometrical arrangements. With regard to the number of phases
present, as many as four phases have been observed to grow simultaneously. However,
the vast majority of technologically useful eutectic alloys are composed of two
phases. For this reason, only the latter type of eutectic will be considered here
(figure 5.1).

At high volume fractions of both phases (f=0.5), a situation which is encouraged by a
symmetrical phase diagram, there is a marked preference for the formation of
lamellar structures (e.g. Pb-Sn). On the other hand, if one phase is present in a small
volume fraction, there is a tendency to the formation of fibres of that phase (e.g. Cr
in NiAl-Cr). As a rule of thumb, one can suppose that when the volume fraction of
one phase is between zero and 0.25, the eutectic will probably be fibrous, especially
if both phases are of non-faceted type. If it is between 0.25 and 0.50, the eutectic
will tend to be lamellar. If both phases possess a low entropy of fusion, the eutectic
will exhibit a regular morphology. Fibres will become faceted if one phase has a high
entropy of fusion or when interfaces having a minimum energy exist between the two
phases. When faceting occurs, the eutectic morphology often becomes irregular and
this is particularly true of the two eutectic alloys of greatest practical importance:
Fe-C (cast iron) and Al-Si (§).

The regularity of an eutectic has a marked effect upon its mechanical properties, and
this becomes especially important when it is required to control the orientation of
the phases in order to obtain what are known as insitu composites. These are alloys
where, using a controlled heat flux (figure 1.4), the eutectic phases can be caused to
grow in a well-aligned manner. When the fibres are strong, as in the case of TaC in
Ni-TaC eutectic, a marked increase in the creep strength of the alloy is found.
Because eutectic alloys exhibit small interphase spacings which are typically one
tenth of the size of those of dendrite trunks under similar conditions of growth, a

large interfacial area exists between the two solid phases. For a lem cube, this area

§ Nodular graphite in cast iron is an exception in
non-faceted/faceted growth. In this case, the graphite grows as
a primary faceted phase, together with austenite dendrites, and
there is no eutectic-like growth of both phases. Sueh a
behaviour has been called divorced growth. If both phases are
faceted, the types of coupled growth described in the present
chapter are not observed.
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is of the order of lmZ. Moreover, the specific energy of the interface is usually
high and increases with increasing dissimilarity of the phases. As a result, there is a
tendency for certain, lowest-energy, crystallographic orientations to develop between

fﬂ small 'B large
o ©o ©
o o o
o o o
o O
VAR a—
« 10 0 ///
s P 0 %
3 ) - -
O O n /’1

Q= AST/IR < 2 10 um

Figure 5.1: TYPES OF BINARY EUTECTIC MORPHOLOGY. Seen in transverse
cross-section, eutectic microstructures can be fibrous or lamellar, regular or
irregular. The condition is that one phase (here the white alpha-phase) must
always have a low entropy of fusion, so that o¢g<2. If both phases possess a low
entropy of fusion, their growth is easy on all crystallographic planes (chapter 2.3)
and the resultant structures are regular (non-faceted/non-faceted eutectic - upper
part of the above figure). When the low volume fraction phase possesses a high
entropy of melting, as do semiconductors and intermetallic compounds for
instance, the eutectics are of non-faceted/faceted type and the microstructures
are usualiy irregular. The important eutectic casting alloys, Fe-C and Al-Sj,
belong to the latter class (lower right of the figure). ln general, fibres are the
preferred growth form when a small volume fraction of one phase is present,
especially in the case of non-faceted/non-faceted eutecties. This is so because,
for A = constant, the interface area, A, and therefore the total interface energy
attributed to the surfaces between the phases decreases with decreasing volume
fraction of the fibres (A o \/fE), while the interface area is constant for
lamellae. The interface area of fibres is lower than that for lamellae at volume
fractions which are smaller than about 0.25. However, if the specific interface
energy between the two phases is very anisotropic, lamellae may also be formed
at a much lower volume fraction (as in Fe-C where f¢ = 0.07).
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the phases and thereby minimise the interfacial energy. This is also the reason why
graphite exposes a maximum extent of its (0001)planes to the iron in cast iron. This
can be done by the preferential formation of lamellae, even at a volume fraction as
low as 0.05. Extensive experimental studies have been made of the crystallography of
eutectic alloys and the results have been reviewed by Hogan, Kraft and Lemkey
(1971). Table 5.1 indicates the results for a number of systems. A list of most of the
eutectics studied by means of directional solidification as well as their properties can
be found in Kurz and Sahm (1975).

Table 5.1: CRYSTALLOGRAPHY OF EUTECTIC ALLOYS

Eutectic Growth Directions Parallel Interfaces
Ag-Cu [llO}Ag, [llo}cu (le)Ag’(le)Cu
Ni-NiMo (112}, 1001}y imo (110) g (100) im0
Pb-Sn (2111p, (211)g, (1TDpy, (01D)g,,
Ni-NiBe [llZ}Ni, [HO}NiBe (l“)Ni’(“O)NiBe
Al-AISb (110}, (211141, (1) 4y, (11D 5150

5.2 Diffusion-Coupled Growth

In order to determine the growth behaviour of the two eutectic phases, the simplest
morphology for the solid/liquid interface will be assumed, i.e. that which exists
during the growth of a regular, lamellar eutectic. For this simple case, the problem
can be treated in two dimensions and, for reasons of symmetry (appendix 2), only half
of a lamellae of each phase need be considered (figure 5.2). In this figure, the alloy is
imagined to be growing in a crucible whieh is being moved vertically downwards at
the rate, V'. In a steady-state thermal environment, this is equivalent to moving the
solid/liquid interface upwards at a rate, V=V'. The alloy of eutectic composition is
growing with its essentially isothermal interface at a small temperature difference
( AT =constant) below the equilibrium eutectic temperature, Te' The alpha- and
beta-phase interfaces are perpendicular to the solid/liquid interface and parallel to
the growth direction. In order to proceed further, it is necessary to know more about

the mass transport involved. It ean be seen from the phase diagram that the two solid
www.iran-mavad.com
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phases are of very different composition, while the melt composition, Ce, is
situated in between. Obviously, the mean composition of the solid is equal to the
composition of the melt. This makes it clear that eutectic growth is largely a
question of diffusive mass transport. Firstly, imagine that the two eutectic phases
are growing separately from the eutectic melt with a plane solid/liquid interface
(left-hand side of figure 5.3). During growth, the solid phases reject solute into the
liquid. Thus, the alpha-phase will reject B-atoms into the melt, while the beta~phase
will reject A-atoms. Note here that, expressed as atomic fractions,
CB=(1-CA). When the phases are supposed to be growing separately with a
plane front, solute transport must occur in the direction of growth. This involves
long-range diffusion and, in the steady-state, the solute distribution is desecribed by
the exponential decay discussed in chapter 3, with a boundary layer, 6c=2D/V.
Sueh a long-range diffusion field will involve a very large solute build-up and a
correspondingly low (much lower than Te) growth temperature at the interface.
During steady-state growth, each phase would have the interface temperature
indicated by the corresponding metastable solidus line when extended as far as the
eutectic composition (see figure 3.4).

Imagining now that both phases are placed side-by-side and that the solid/liquid

Figure 5.2: PHASE DIAGRAM AND REGULAR EUTECTIC STRUCTURE. The
figure shows an eutectic phase diagram and a regular lamellar two-phase eutectic
morphology growing unidirectionally in a positive temperature gradient. The alpha
and beta lamellae grow side by side and are perpendicular to the solid/liquid
interface. The form of the junctions where the three phases (alpha, beta, liquid)
meet is determined by the condition of mechanical equilibrium. In order to drive
the growth front at a given rate, V, an undercooling, AT, is necessary. Due to the
perfection and symmetry of the regular structures, only a small volume element
of width, N/2, need be considered in order to characterise the behaviour of the
whole interface under steady-state conditions.

WWw.ira n;mavad.com
0i

Age medize 9 Olgedil @2 ye



interfaces are at the same level (figure 5.3b). This situation is much more favourable
since the solute which is rejected by one phase is needed for the growth of the other.
Therefore, lateral diffusion along the solid/liquid interface, at right-angles to the
lamellae, will become dominant and lead to a huge decrease in the maximum solute
build-up at both phases. A periodie diffusion field will be established. The varying

melt composition at the interface will cause the liquidus temperature to vary along

CA——-F

Figure 5.3: EUTECTIC DIFFUSION FIELD. If it is imagined that the two eutectic
phases are growing from a melt of eutectic composition in separate, adjacent
containers (a), very large boundary layers, like that in figure 3.4, will be created.
If both phases are constitutionally undercooled, their solid/liquid interfaces will
break down to give dendrites, making solute rejection easier. If the two containers
are now brought together and the intervening wall is removed (b), extensive
lateral mixing will take place because of the conecentration jump at the o/
interface. The large boundary layers of the planar interfaces of 'a' (approximately
equal to 2D/V) are replaced by a very limited layer whose thickness is
approximately equal to the phase separation, \. This marked change in the extent
of the boundary layer is due to the diffusion flux which is established at, and
parallel to, the eutectic solid/liquid interface and permits the rejection of solute
by one phase to be balanced by incorporation of the solute into the other phase
(dif fusion eoupling). The interface composition in the boundary layer oscillates, by
a very small amount, about the eutectic composition, and the amplitude of the
oscillation will decrease as A decreases, when V is constant. The lateral
concentration gradients create free energy gradients which exert a "eompressive'
force perpendicular to the alpha/beta interface and tend to decrease A. The
corresponding phase diagram has been placed next to the solid/liquid interface in
such a way that the local phase equilibria ecan be determined. It can be seen that
the amplitude of the concentration variation at the solid/liquid interface is
proportional to a solute undercooling, ATg.
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the solid/liquid interface of the corresponding phase. Because the maximum
concentration differences at the interface (compared to the eutectic composition)
are much smaller than in the case of single-phase growth, the temperature of the
growing interface will be eclose to the equilibrium cutectic temperaturc. The
proximity of the lamellae, while making diffusion easier, also causes a departure,
from the equilibrium described by the phase diagram, due to capillarity effects
(figure 5.4).

Both effects, diffusion and capillarity, are considered together in figure 5.5. In
figure 5.5a, the diffusion paths at the interface are shown schematically. These are
most densely packed (higher flux) at points near to the interface. They rapidly
become less significant as the distance from the interface increases. The
characteristic decay distance for the lateral diffusion is of the order of one

interphase spacing, A . Note that the diffusion paths for the other species, in the

phase diagram for XA = e

- ph diagr tor

N
D 1 1 1 S

|

Figure 5.4¢ CURVATURE EFFECTS AT THE EUTECTIC INTERFACE. The
diffusion field causes the A-value of the structure to be minimised, and this leads
to more rapid growth. There is an opposing effect which arises from the increased
energy associated with the increased curvature of the solid/liquid interface as A
decreases. The latter can be expressed in terms of a curvature undercooling,
ATp, which depresses the liquidus lines of the equilibrium phase diagram as
shown. The positive curvature of the solid phases in contact with the liquid arises
from the condition of mechanical equilibrium of the interface forces at the
three-phase junction (lower figure, see also appendix 3).
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Figure 5.5 EUTECTIC INTERFACE CONCENTRATION AND TEMPERATURE. If
one considers the concentration field shown on the right-hand-side of figure 5.3
more closely, it can be seen that the diffusion paths of component B will be as
shown in diagram (a). The concentration in the liquid at the interface will vary as
in diagram (b). (Note that the eutectic composition is not necessarily found at the
junction of the two phases, and that Cpg=1-Cp). This sinusoidal
concentration variation decays rapidly over one interphase spacing, in the
direction perpendicular to the solid/liquid interface, as shown in figure 5.3. The
equilibrium between an attractive force arising from the diffusion field, and a
repulsive force between the eutectic lamellae arising from capillarity effects at
small A determines the eutectic spacing. The growing interface can be regarded
as being in a state of local thermodynamic equilibrium. This means that the
measurable temperature, Tqg*, of the interface which is constant along the
solid/liquid interface (over ﬁ/Z) corresponds to equilibrium at all points of the
interface. The latter is a function of the local concentration and curvature (c).
The sum of the solute (AT,) and curvature (AT,) undercoolings must
therefore equal the interface undercooling, AT. A negative curvature, as shown
here at the centre of the beta lamella, is required when the solute undercooling,
AT,, is higher than AT. The discontinuity in the solute undercooling, as the
alpha/beta interface is crossed, is only a discontinuity in equilibrium temperature
and not a real temperature discontinuity.
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opposite direction, are analogous. According to the phase diagram, the sinusoidal
concentration variation at the solid/liquid interface (figure 5.5b) leads to a change in
the liquidus temperature of the melt in contact with the phases (figure 5.5¢). The
points where the liquid composition, CB* is equal to Ce are exactly at the
eutectic temperature, while those points of the alpha-phase close to the alpha/beta
interfacc are at a higher liquidus temperature because the liquid in these regions has
a lower content of B, as determined by the lateral diffusion field. On the other hand,
the melt ahead of the beta-phase is always richer in A than is the equilibrium
eutectic composition. Therefore, its liquidus temperature is lower, compared to the
equilibrium eutectic temperature, and decreases with increasing values of CA.
(These relationships can be understood with the aid of the phase diagram - see
exercises 5.7 and 5.8).

In order to determine the solute distribution, the flux condition (eppendix 2) must
first be applied. In the present calculation, it is assumed that the interface is planar
and that the sinusoidal concentration variation of figure 5.5b can be approximated by
using a saw-tooth waveform with amplitude, AC=(C‘: - CF) , and diffusion
distance, A/2. In this way, the concentration gradient in the liquid at the solid/liquid
interface is found to be: (dC/dy),_, = AC/(N/2) and the flux transporting atoms
from one solid phase to the other via the liquid is:

Jt='~%-[-))%-g (5.1}

The rejected flux per unit solid/liquid interface area is equal to V(CZ‘ - CS*), giving:
J. = VCu(l - k) i5.2}

This relationship holds for deviations of the melt concentration, AC, which are small
compared to C,, and Cy=C,. This is the case for many eutectics, where AC is
typicaliy of the order of 1%, and C is of the order of 50%.

Under steady-state conditions, the flux balance, Jt = Jr’ can then be written:

AC__ o N (5.3}
Celk - 1) 2D )

which is, in fact, entirely analogous to the previously presented equation for the
diffusional growth of a hemispherical needle. The left-hand-side of equation 5.3
corresponds to a supersaturation, while the right-hand-side is the Péclet number for

eutectic growth. Therefore, one can also write equation 5.3 in the form:

Q =p (5.4}
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The concentration difference, AC, required to drive solute diffusion in eutectic
growth can be used to determine a temperature difference (undercooling) from the
phase diagram, via the constant liquidus slopes, AC= ATc[l/('ma)+ l/mB},

leading, via equation 5.3, to a relationship of the form:
AT, = K, AV (5.5}

From equation 5.4 or 5.5, it can be seen that this problem is not completely solved
because, as in the case of dendritic growth, the above equations apply equally well to

a fine eutectic growing at high rates or a coarse eutectic growing at low rates.

5.3 Capillarity Effects

Returning to the periodic concentration variation existing ahead of the solid/liquid
interface (figure 5.5), it can be seen that the corresponding liquidus temperature
varies from values greater than Te» for certain regions of the alpha-phase, to
values below the actual interface temperature, Tq*. The difference (hatched region
in figure 5.5¢) has to be compensated by the local curvature in order to maintain local
equilibrium at the interface. Thus, since Tq* is constant due to the high thermal
conductivity and small dimensions of the phases:

AT = AT, + AT = Tg = T * = constant (§) (5.8}

A negative curvature (depression) may appear at the center of a lamella in order to
compensate for a very high local solute concentration which is often associated with
a large spacing, A.

At points close to the alpha/beta interface, another condition must be imposed. That
is, the alpha/beta interface energy, "aﬁv at the three-phase junction, has to be
balanced by the sum of components of the «/t- and B/L -interface energies
(figure 5.4). The angles at the three-phase junction are thereby determined by
considerations of mechanical equilibrium (appendix 3).

The curvature of the alpha/liquid or beta/liquid interface, necessary to match the

angles at the three-phase junction, changes the equilibrium temperature by an

§ As in the case of directional dendrite growth, the thermal
undercooling is zero during directional eutectic growth because
heat is flowing into the solid (G>0).
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amount, A’l‘r, which is a function of y (figure 5.5¢). By calculating the mean
curvature over the alpha/liquid and beta/liquid interfaces (appendix 9), the effect of
capillgrity can be related to a mean change in the liquidus temperature by

(equation 1.4):
at = Ik
Because tie curvature, K, is proportional to 1/\:

K!
K=& 5.7

where K' is a constant. Use of equations 5.5 to 5.7 leads to the following relationships

for the solid/liquid interface undercooling:

AT = Ko AV + ‘—;"r (5.8}

Thus, a relationship is obtained which exhibits a maximum in the growth temperature
(equivalent to a minimum in AT) as a function of A (figure 5.6), where the growth
rate is imposed and constant and AT is the dependent variable. Constant values of
the growth rate are typical of directional solidification. On the other hand, the
undercooling is imposed and constant in the initial stages of equiaxed solidification
and results in a maximum in the V-A-curve (figure 5.7).

5.4 Operating Range of Eutectics

Upon considering equation 5.8, it becomes clear that it is not uniquely determined
since AT is a function of the product, AV. Therefore, another equation is required in
order to determine the growth behaviour of an eutectic. This situation is analogous to
that existing in dendrite growth. In the case of dendrite growth, the assumption of
growth at the limit of morphological stability as the operating point has been found
to correspond well with the experimental results. In the case of eutectic growth, both
a point analogous to this one, and the extremum point, have been found to explain
various experimental results. Eutectic alloys which grow in a regular manner
(e.g. Pb-Sn) can be described well by the use of the extremum criterion. Using this

assumption, the first derivative of equation $.8 is determined and set equal to zero:

d(AaT)

ax =0 [5.9}
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Figure 5.6: CONTRIBUTIONS TO THE TOTAL UNDERCOOLING IN EUTECTIC
GROWTH. Using figure 5.5¢, a mean solute undercooling and & mean curvature
undercooling can be defined. Both undercoolings vary in opposite senses when the
spacing is changed; AT, increases linearly while AT. decreases with
increasing spacing (b). Note that AT is measured downwards with respect to Te.
The sum of the contributions exhibits & minimum in AT or a maximum in T with
respect to A. At smaller spacings, eutectic growth is controlled by capillarity
effects (AT.>AT,). At larger spacings, diffusion is the limiting process.
Generally, it is assumed (ad hoe) that growth will occur at the extremum, )‘e°
An increase in the growth rate increases the absolute value of the slope of the
AT, line, without influencing the AT.curve, and displaces the maximum of
the T-A curve to smaller spacings.

The condition that AT be a minimum implies, since AT = AG/ASI" that d(AG)/dA
= 0 and means that the driving force for spacing changes is zero. Insertion of the

corresponding value of the spacing leads to the final result for growth at the

extremum:
A2y = Kr (5.10}
KC
& = KK, (5.11}
AT = 2K, [5.12}

Equation 5.10 is illustrated in figure 5.8.
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The situation is more complex when irregular eutectics are considered. In this case,

the local spacing corresponding to the extremum values can be found, but the mean
spacing is much larger (figure 5.8). Such large spacings can be explained by the
difficulty which this class of eutectic experiences in branching. The latter is an
essential mechanism which permits the eutectic to adapt its scale to the local growth
conditions and to approach the extremum point. If one of the phases does not easily
change direction during growth, and instead grows in a highly anisotropic manner
(e.g-the faceted phases, C and Si, in Fe- and Al-alloys respectively), due to its
atomic structure or planar defect growth mechanism, the lamellae of the phase must

diverge until one of them can branch. This behaviour can be understood with the aid

N A
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Figure 5.7: OPTIMISATION OF THE EUTECTIC SPACING. A range of possible
spacings exists, each of which satisfies local equilibrium requirements. This
situation is described by the AT-V-A surface of this figure which form a valley
running from the left rear to the front right of the diagram. (The AT axis is
reversed here with respect to the equivalent diagram in figure 5.6b). It is seen
that if the growth rate is constrained (V=constant), as in directional
solidification, @ minimum in the AT-A curve (e.g.at point A) is obtained,
corresponding to the maximum in the T-A of figure 5.6b. If AT is maintained
constant, as in equiaxed (isothermal) growth, the V-A curve exhibits a maximum
at point B for example. This curve for the plane-front growth of an eutectic is
analogous to that in figure 4.9 for dendrites, where R replaces A. The spacings
corresponding to A or to B are called 'extremum' or 'optimum' spacings and, in
regular eutecties, correspond closely to experimentally determined values.
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of figure 5.9. When two adjacent lamellae are growing with the extremum spacing and
begin to diverge, the interface of the matrix will first become depressed because of
the consequent increase in solute concentration at its centre (lower middle of
figure 5.9). As the solute builds up more and more at the interface of the diverging
phases, the growth temperature must decrease because ATc increases. Finally, the
diverging phases will reach a spacing which is so large that even the low volume
fraction phase will exhibit depressions at its solid/liquid interface. Under these
conditions, the single lamella may branch into two. When a new lamella has been
created, it will usually diverge from the other one of the pair and tend to converge
towards other lamellae at the interface (figure 5.10). In this case, since the phase

separation is decreasing, the interface temperature will increase, due to the

A (kM)

Figure 5.8: EUTECTIC AND EUTECTOID SPACINGS AS A FUNCTION OF
GROWTH RATE. If the optimum spacings (figure 5.7) are determined for a range
of growth rates (projection of the broken line on the A-V surface in figure 5.7),
curves such as the centre one above are found, where the spacing versus growth
rate relationship can be described by V = constant. The eutectoid
microstructure resembles that of the eutectic, as does its growth law, but
diffusion occurs only through solid phases. Thus, there is a tendency to decrease
the diffusion distances by decreasing the spacing, and the values of the latter are
therefore smaller than those of regular eutectics. Also, because of the relative
inefficiency of solid-state diffusion, interface diffusion can be very important in
eutectoid growth. In this case, the growth law is no longer the same as that for
eutectic growth. Irregular eutectics, such as Fe-C and Al-Si, do not appear to
grow at the extremum, but rather at larger values of A.
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decreasing solute build-up, and eventually reach the maximum in temperature (or
minimum in undercooling). As the faceted phase cannot easily change its growth
direction, its growth will decrease the local spacing to a value below the extremum
value. However, smaller values will soon decrease the temperature appreciably due to
the steep slope of the curve in this region. As a result, any spacing smaller than the
extremum value will tend to be increased by the cessation of growth of one of the

neighbouring lamellae (a termination appears).

range of stable growth

LY,

A, Ap

Figure 5.9: SPACING-CONTROLLING MECHANISMS IN IRREGULAR
EUTECTICS. This figure illustrates the interface morphologies obtained with
convergent and divergent growth of the minor faceted phase of an irregular
eutectic. In this case, the faceted phase can grow only along a planar growth
defect (figure 2.10), making changes in the growth direction of the faceted phase,
and therefore in the spacing, very difficult. In convergent growth, the spacing will
decrease during growth, thereby increasing the curvature of both phases. This will
lead to the cessation of growth in that region because the interface temperature
drops at the left of the extremum, Ao, due to an increesing AT, value. In
divergent growth, the spacing becomes larger during growth, leading to increased
solute pile-up ahead of both phases. This leads to the formation of depressions in
the major phase at first (figure 5.5), and later in the minor phase. When the minor
phase becomes depressed at )\b, branching (formation of two lamellae from
one) is possible and the spacing will be decreased again. This leads to zig-zag
growth of the faceted phase between A and Ap.
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Figure 5.10: GROWTH OF IRREGULAR EUTECTICS. Difficulty in smoothly
changing the growth direction (stiffness) of certain faceted phases results in the
zig-zag growth structure described in figure 5.9. Here, the corresponding spacings
are defined as well as the non-isothermal character of the solid/liquid interface.
The resultant microstructures are irregular, and common examples are the two
eutectics, Fe-C and Al-Si, upon which most commercial casting alloys are based.

Thus, the range of stable eutectic growth is located between the extremum value,
Ao

difficulties will exploit the whole range and this explains their coarse spacing

and the branching spacing, M. Only those eutectics with branching

(figure 5.8), large undercoolings, large spacing variations (=irregularity), and
sensitivity to temperature gradient variations.

The branching point can be calculated by using a stability analysis which is analogous
to the criterion used in the case of dendritic growth. The main difficulty involved in
using this approach is the estimation of the concentration gradient at the
non-isothermal interface. This has been done by the use of numerical methods
(Fisher & Kurz, 1980).
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5.5 Competitive Growth of Dendritic and Eutectic Phases

As shown in figure 5.11, binary eutectics can undergo two types of morphological
instability; single-phase or two-phase. The latter is analogous to the morphological
instability of a planar single-phase interface (chapter 3) but, due to the very complex
behaviour involved, quantitative analysis is difficult. In general, it can be said that a
third alloying element which is similarly partitioned between both solid phases will
lead to two-phase instability and the appearance of cells or even eutectic dendrites
(figure 5.11b).

When the third element is incorporated preferentially into one phase, or during
off-eutectic growth of a pure binary eutectic, single-phase instability can occur and

result in the appearance of mixed structures, that is, dendrites of one phase and

Figure 5.11: TYPES OF EUTECTIC INTERFACE INSTABILITY. The planar
eutectic solid/liquid interface can become unstable just as in the case of a
single-phase interface. Here, there are two different ways in which an instability
can develop; instability of one phase(a), or instability of both phases(b). The
former leads to the appearance of dendrites of one phase (plus interdendritic
eutectic) and is mainly seen In off-eutectic alloys in binary systems.
Alternatively, a third (impurity) element may destabilise the morphology as a
whole because & long-range diffusion boundary layer is established ahead of the
composite solidAliquid interface. (Recall that the eutectic tie-line of a binary
system degenerates to an eutectic three-phase (L + o + ) region in a ternary
system). This can lead to the appearance of two-phase eutectic cells or
dendrites (b).
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interdendritic two—phase eutectic (figure 5.11a). The reason for the latter effect is
that, due to the long-range boundary layer built up ahead of the solid/liquid interface
in this case, one phase becomes heavily constitutionally undercooled. This can be
‘appreciated from the fact that, in an off-eutectic composition, the alloy liquidus is

always higher than the eutectic temperature (figure 5.12). That is, the corresponding

a-dendriles B-dendriles
& coupted & coupted

euteclic euteclic

Figure 5.122 COUPLED ZONE OF EUTECTICS. From consideration of the
equilibrium eutectic-type phase diagram alone, it might be thought that
microstructures consisting entirely of the eutectic can only be obtained at the
exact eutectic composition. In fact, due to the growth characteristics of dendrites
and eutectics, the latter can often grow more rapidly than the dendrites and
therefore outgrow them over a range of growth conditions. This occurs during
directional growth, in a Bridgman furnace for instance (figure 1.4a), when the
dendrite tip temperature is low. This can happen at both low and high growth
rates (figure 4.13). The coupled zone (grey region) represents the growth
temperature/composition region where the eutectic grows more rapidly (or at a
lower undercooling) than dendrites of the alpha or beta phases. This zone,
corresponding to an entirely eutectic microstructure, may take the form of an
anvil, where the upper widening is detected in experiments carried out at low
growth rates and high temperature gradients, and the lower widening is found for
growth at high growth rates, corresponding to high undercoolings. Within the
coupled zone, an increased growth rate (decreased temperature) will destabilise
the solid/liquid interface due to the presence of impurities. This leads firstly to
the formation of two-phase cells and later to the formation of two-phase
dendrites (figure 5.11b). Outside of the coupled zone, primary dendrites and
interdendritic eutectic will grow simultaneously (figure 5.11a).
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primary phase will be more highly undercooled and tend to grow faster than the
eutectic. This case is of considerable importance because the properties of a casting
can be appreciably impaired or enhanced when single-phase dendrites appear. Under
some circumstances, dendrites can be observed in alloys having an exactly eutectic
composition if the growth rate is sufficiently high. The reason for this behaviour is
qualitatively explained by figure 5.13. The undercooling of the eutectic interface as a
function of V is described by equation 5.11, while the undercooling of the dendrite
tips obeys an analogous relationship when the temperature gradient is equal to zero.
When growth occurs in a positive temperature gradient, the temperature-velocity
curve exhibits a maximum (figure 4.13) and the eutectic curve (which is usually
unaffected by G) may be cut at both high and low growth rates. When the dendrite
curve is below the eutectic curve, only eutectic will be observed. When the dendrite
curve is higher, both dendrites and eutectic are observed. If the undercoolings which
lead to entirely eutectic growth are determined for a range of compositions, they
make up what is known as the coupled zone. When the coupled zone is symmetrical

(figure 5.12), the eutectic morphology will obviously be obtained for eutectic

Co. G>0
_B-dendriles (f)
planar
- - gutectic\
- // - :/
= -
// 4 -
/a -dendrites (nf) \
\
e i \
A Co B log vV —

Figure 5.13: ORIGIN OF SKEWED COUPLED ZONES. Symmetrical coupled zones
(figure 5.12) are associated with regular eutectics and reflect the similar
undercoolings of the two primary dendrite types. When the eutectic is irregular,
the associated high undercoolings at high growth rates of the eutectic and the
faceted(f) primary [-phase, compared to that of the non-faceted (nf) ct-phase,
lead to the establishment of a skewed zone. The most important practical effect
of this is that a fully eutectic microstructure may not be obtained when an alloy
of eutectic composition is rapidly solidified. Because the zone is skewed towards
the phase which has growth problems (such as Si in the Al-Si system), it is
necessary to use a starting composition which is richer than Cg in the faceted
element in order to obtain dendrite-free eutectic microstructures.
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compositions at all growth rates (undercoolings). However, in the case of skewed
coupled zones, high growth rates may lead to the formation of alpha-dendrites even
on the beta-rich side of the eutectic composition. Such skewed zones are usually
associated with eutectics which contain one phase having anisotropic growth
characteristics. Thus, a skewed zone is normally associated with irregularity of the
eutectic morphology (e.g. Al-Si or Fe-C). These assumptions hold only for normal

growth conditions. In the case of rapid solidification processing (for example:

fibre-spinning, strip-casting, laser surface remelting), new phenomena may occur due
to the extremely high undercooling reached. These have been summarised in an

interesting paper by Boettinger (1982).

a1

Figure 5.14: DIRECTIONAL PERITECTIC GROWTH. This is an important reaction
which occurs in steels, bronzes, and other alloys. It has been suggested that
conditions similar to those used in off-eutectic solidification might suppress
primary dendrite growth and lead to the formation of an eutectic-like
microstructure, at least over short distances. This has not been clearly
demonstrated, and the usual sequence of events is that primary dendrite trunks
form close to T and begin to react with the liquid to_ form B—phase close to
Tp. Because this involves diffusion through the solid 3—phase, the reaction is
very slow and is rarely completed before the remaining, un-reacted liquid
disappears or undergoes an eutectic reaction at Te (if there is an eutectic in the
phase diagram). Normal solidification conditions will tend to produce a
microstructure which consists of primary o-dendrites, with a surface layer of
B-phase, separated by interdendritic O + B eutectic. Dissolution of the
interdendritic peritectic phase by preferential chemical etehing reveals the form
of the dendrites (as on the cover of this book).
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5.6 Peritectic Growth

In peritectic alloys, steady-state coupled growth, analogous to that of eutectics, is
theoretically impossible and hence similar, uniform, fine microstructures are
unknown. Some evidence exists which suggests that coupled growth may be possible
over short distances but, in general, dendrites of one phase are formed. At a point
behind the dendrite tip, partial reaction with the interdendritic liquid begins and
gives the peritectic phase (figure 5.14). The microstructure of these alloys is
therefore dendritic, with the peritectic phase, and possibly an eutectic phase,

forming the interdendritic precipitate (Glardon & Kurz, [1981]).
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EXERCISES

Calculate the egquilibrium volume fraction of carbon at T, in an Fe-C alloy

of eutectic composition.

Calculate, on purely geometrical grounds, the volume fraction at which fibrous
or lamellar structures have the lower total a/B interface energy. Assume that
the a/ﬁ interface energy is isotropic and that the phase separation, A, is

equal and constant in both cases.

In figure 5.5b, the solute concentration in the liquid at the eutectic solid/liquid

interface (z = 0) is given. Draw an approximate C-y diagram for z= A.

In order to demonstrate the potential value of producing 'in-situ' composites
via directional eutectic solidification, calculate the total length of fibres

contained in a composite cube of side lem when A= lum.
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5.5

5.6

5.7

5.8

5.9

5.11

5.13

An eutectic stores part of the transformation energy in the form of a/ﬁ

interfaces (figure 5.4). By what amount, AT, will the melting point of a

lamellar eutectic with A = lum and Oag = 5)(10-8J/mm2 be lowered? As

shown in appendix 12, the magnitude of Asg is typically of the order of
6 3

107J/m K.

Find expressions for Kc and Kr (equation 5.8) for the simple case shown in

the main text, and derive the solutions for extremum growth.

Using the phase diagram, explain the apparent discontinuity of the liquidus

temperature, T¥, at the a/f3-junction shown in figure 5.5c.

Draw analogous diagrams to those in figure 5.5 for the case where both phases
have a positive curvature, and for the case where both phases have depressions

at their centers.

It can be easily shown that, at least over one half-spacing of the eutectic
(figure 5.2), the solid/liquid interface of the eutectic must be very close to
isothermal: an enormous heat flux in the y-direction would be required in order
to change, even slightly, the interface temperature of the two phases. Using
the properties of Al (appendix 12), calculate this lateral heat flux, assuming
that AT = 0.1K and that A= lum.

Experiments performed on eutectic Fe-Calloys reveal the following

7

relationship for the mean lamellar spacing, X: )\2V = 4x10 mmg/s.

Does this support the extremum criterion? Use equation A9.30,
Is an effect of G upon the spacing of regular eutectic microstructures at a
given growth rate to be expected? Explain your answer.

Draw a T-V diagram, similar to that in figure 5.13, for a symmetrical coupled

zone under conditions where G >0.

Repeat exercise 5.12 for the case when G=0. Compare your results with
figure 5.12. (First study figure 4.13 in detail).
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5.16

Under constrained growth conditions (G>0) at low growth rates, coupled
eutectic growth without the appearance of dendrites is possible at off-eutectic
compositions (figure 5.12). Calculate the limit of stability of a hypereutectic
Al-Alzcu(G) alloy containing 36wt%Cu at which 6O-dendrites plus eutectic
will appear as in figure 5.11a. (Hint: use the simple constitutional undercooling
criterion and replace AT0 by T, - Te). To what line in figure 5.12 does

this situation correspond? What will happen if G is doubled?

From the growth equations for dendrites (when G=0) and eutectic: ATy =
Kg /V and AT, = K, /V, determine the limiting growth rate and
temperature of the coupled zone as a function of the composition. (Note that
both growth morphologies must grow at the same rate in order to exist
side-by-side under steady-state conditions. Assume that the constants, Kd
and Ke, are independent of the composition and that ATd and ATe are

defined as shown in the figure below.

Ce Co

Sketch the solid/liquid interface of a upidirectionally and dendritically
solidifying steel containing 0.2wt%C. Note that, due to the rapid solid-state
diffusion of carbon in O0-Fe and 7Y-Fe, the liquid/solid and solid/solid
transformations closely follow the behaviour to be expected on the basis of the

equilibrium diagram.
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CHAPTER SIX

SOLUTE REDISTRIBUTION

1t Iias been explained in some detail in chapter 3 that the solid/liquid interface rejects
solute into the liquid when the solubility of the solute element in the solid is smaller
than that in the liquid. In this case, the liquidus slope, m, is negative and the
distribution coefficient, k, is smaller than 1. On the other hand, m is positive and k is
greater than unity when the solubility is greater in the solid than in the liquid. In this
case, solute will diffuse from the liquid to the solid. This leads to the creation of a
depleted zone ahead of the solid/liquid interface.

As far as metals growing under normal solidification conditions are concerned, local
equilibrium is assumed to hold at the solid/liquid interface. Then, at the interface,
the solid concentration is related to the liquid concentration by the equilibrium

distribution coefficient (equation 1.8):

Cg* =k CF
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This compos. «J difference will always lead to concentration variations, in the
solidified alloy, which are known as segregation. Note that the solute distribution in
the liquid ahead of the solid/liquid interface leads to the appearance of the various
growth morphologies and the latter in turn determine the solute distribution in the
solid. Concentration differences over microscopic distances, interdendritic
precipitates and porosity are the result.

Because solute can be transported by diffusion or by convection (or both), the
segregation pattern will be quite different depending upon the process involved.
Convection can lead to the transport of mass over very large distances, compared to
those involved in diffusional processes, and may result in macrosegregation, that is,
compositional differences over distances equal to the size of a large casting. As
convection will not be treated in this book, for reasons outlined in the foreword,
attention will here be limited to microsegregation (§). The latter depends upon solute
diffusion in the liquid and solid and is related to the dendrite shape and size.
Understanding of this phenomenon is the key to interpreting the influence of
solidification on the mechanical properties of cast products or welds. Furthermore,
microsegregation reveals the original microstructure of any solidified alloy via the
differences in etching tendency of regions of varying local composition.

In order to understand the segregation occurring at the scale of the dendrites, which
is complicated due to the morphology of these crystals, it is useful to begin with a
description of the solute distribution existing during directional solidification of a rod
of constant cross-section with a planar solid/liquid interface (figure 1.4). In this
special case, all of the changes occur in one dimension only and are therefore easier
to analyse. Once this case is fully understood, it will be possible to use the results to
study in a qualitative manner more complicated cases by imagining the changes
occurring in small volume elements to be the same as those occurring during

directional solidification (figure 1.5).

6.1 Mass-Balance in Directional Solidification

In chapter3, the mass balance was treated only with respect to steady-state
conditions. In order to understand microsegregation it is also essential to consider the
initial and final transients. The first is required in order to establish the steady-state

§ For an introduction to convection effects in solidification, the
reader is referred to the bibliography at the end of the chapter.
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boundary layer, and the second arises from the interaction of the bound. iyer at
the solid/liquid interface with the end of the specimen (figure 6.1). The diffusion
boundary layer in the liquid ahead of a planar solid/liquid interface can be regarded
as a limited region of the system which transports the solute missi.ng from the initial
transient in the solid where the concentration is below Co, and maintains constant
the overall composition of the system. This moving boundary layer disappears at the
end of solidification by 'depositing® its solute content in the final transient. Thus, the
mean composition of the solid is always the same as that of the liquid from which it
is formed. Account is not taken here of reactions with the crucible or vaporisation of

the alloy.

6.2 The Initial Transient

Figure 6.1 depicts in a schematic manner, the mechanism leading to the formation of
the boundary layer and the initial transient. The process is shown for a bar of
constant cross-section, A (appendix 10). When the first volume element, Adz', has
solidified (where dz' is vanishingly small), the solute which has not been incorporated
into the solid is equal to the incremental volume of the solid (Adz), multiplied by the
difference in composition between the liquid and the solid (C:‘-Cs*), which at z'= 0
is equal to C,kC,. This mass, divided by the time necessary for the advance of
the interface by dz', leads to a solute flow at the interface where V =dz'/dt
(equation 3.4):

Jp = AVC;"(I - k)

This flow leads to the creation of a pile-up at the interface and leads to the
establishment of a concentration gradient, and diffusional flow into the liquid

adjacent to the interface:
J2 =-ADG, = AV(Ci“ - Co) {6.1]

Note that Gc=(Cf-Co)V/D (appendix 2). The difference between the two flows,
Jl , due to the creation of solid and JZ’ due to diffusion in the liquid, gives the

approximate variation in mean solute accumulation in a boundary layer of thickness,
8of
-3, = (95
Iy -dz = (550 de (6.2]
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Figure 6.1: INITIAL AND TERMINAL TRANSIENTS. During directional
solidification with a planar solid/liquid interface, in an apparatus such as the
Bridgman furnace (figure 1.4), the establishment of a steady-state boundary layer
requires a distance of growth which corresponds to the length of the initial
transient. This distance increases with decreasing growth rate. Within this
transient, the concentration of the liquid at the interface increases from Cy to
Co/k. With respect to the phase diagram (assuming the existence of local
equilibrium), this means that the first solid to freeze has the composition, kCg,
and reaches the composition, C, and the interface temperature, Tg,
corresponding to composition, C,, at the steady-state. At the steady-state, the
flux due to the interface advance (which arises from the difference in liquid and
solid solubilities) is equal to the diffusional flux due to the concentration gradient
at the solid/liquid boundary. In this case, the exponential decay described in
chapter 3 is the exact solution. Finally, when the boundary layer becomes equal to
the length of the remaining liquid region, diffusion into the liquid phase is
hindered by the system boundary (the concentration gradient must be zero at the
end of the crucible). Thus, the concentration in the liquid at the solid/liquid
interface begins to increase to a value which is greater than Cy/k, and the solid
concentration therefore becomes greater than C, and a terminal transient is
created. In order to maintain the conservation of mass, the surface area of the
grey region below Co must be equal to the grey area above C,. Note that the
lengths of the initial and terminal transients are unequal. These concentration
variations can be a major problem in solidification processes and are known as
segregation. The same phenomenon is usefully exploited in 'zone-refining', where
the depleted (purer) part of the rod of used.
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This leads to a differential equation which, upon integration, gives (appendix 10):

G =(%0) (1 - (1 - Wexp(- ¥2¥y) (6.3]

As shown in figure 6.1, the initial transient exists until the increasing flow, Jl
(proportional to C}) becomes equal to the initially smaller, but more rapidly
increasing flow, J, (proportional to Go)- Figure 6.2 shows equation 6.3, for the
solid composition, plotted as a function of the dimensionless distance. This permits an
estimation of the length which must solidify before the steady-state is reached. Note
that in alloys with small values of k, solidifying at low rates, a large distance may be
required. For example, if k is equal to 0.1, V is equal to 10_3mm/s, and D is
5x10_3mrn2/s, the characteristic distance required to establish a steady-state
planar interface having 82% of the theoretical concentration is of the order of
100mm?

c¥rco

Vkz'/D

Figure 6.2z LENGTH OF THE INITIAL TRANSIENT FOR A PLANAR
SOLID/LIQUID INTERFACE. In many solidification experiments, it is important
to ensure that the steady-state has been reached. This is because nearly all of the
theoretical analyses of the microstructures formed assume time-independent
conditions in order to simplify the analysis. The diagram illustrates the length of
the initial transient of figure 6.1 for typical values, of distribution coefficients,
less than unity. A safe rule-of-thumb is that the distance of interface travel
required for the establishment of the steady-state is 4D/Vk.
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This is an important factor to bear in mind when applying steady-state theory to
experiments involving a plane interface. Equation 6.3 is only an approximate, but
useful, solution for the initial transient. The exact relationship can be found in Smith
et al(1955). In the case of dendritic growth, the steady-state is reached much faster.
A practical indication of the establishment of the steady-state in this case is the

appearance of a uniform microstructure in longitudinal sections of the solidified ingot.

6.3 The Steady State

The steady state is established when dC¥*/dt = 0. Then:
L

Jl = J2 [6.4])
and:

Cr-GCo

- =] {6.5])

Cr1-k)

which is equivalent to Qc = 1. In other words, the planar solid/liquid interface
grows at the solidus temperature corresponding to the alloy composition. The
concentration of the melt then decreases exponentially as a function of distance, z

(equation 3.2):

C,- Co = ACexpl- %]

forming a diffusion boundary layer with the characteristic length, Bc=2D/V and a

concentration gradient at the interface, G,= ACOV/D.

6.4 The Final Transient

When the boundary layer becomes comparable to the length of the remaining liquid
zone, interaction with the boundary of the system begins to occur (figure 6.1). The
end of the liquid zone can be regarded as being a perfectly impermeable wall which

imposes a zero flux condition at that point:

dc =
($)p=1=0 (6.6}
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This is equivalent to saying that the flow into the liquid decreases and therefore the
concentration increases as shown in figure 6.1. If it is imagined that the end of the
specimen is acting as a source with a strength equal to the flow which would leave
this boundary if it were permeable, equation6.6 is satisfied and the final
concentration profile can be found by superposition of symmetric sources. This
method leads to a series giving C‘L* as a function of the final liquid length, 1

(appendix 10).

6.5 Rapid Diffusion in the Liquid - Small Systems

The analysis of the solute distribution becomes much simpler when it is assumed that
diffusion in the liquid is sufficiently rapid to avoid the establishment of any
concentration gradient ahead of the solid/liquid interface. This is a reasonable
assumption to make in the case of very high diffusion coefficients in the liquid,
strong convection, and/or a very small system size, L, compared to the boundary
layer thickness. Considering only the case of diffusion, no concentration gradient will
exist in the liquid when the dif fusion boundary layer is much greater than the system

size:

= 2Pt > L (6.7)

This is so because then the insulating effect of the end of the specimen will smooth
out any concentration gradient. Under these conditions, the most general treatment
involves a combined approach (appendix 11). Figure 6.3 shows the corresponding
concentration profile. Here, the boundary layer in the solid, 55, due to back
diffusion, will take a value between zero and infinity depending upon the value of the
diffusion coefficient in the solid. With the relative interface position,
s/L=fs=(l—fl), the mass balance, Al = Ay + A3, can be written, to a

first-order approximation:

ds

(C,- Cg®Mdfg = f,dC, + dcg* (6.8]

where C, =CF. Assuming that the interface position, s, is a parabolic function of

time (§), and integrating (appendix 11) gives:

§ This function gives a consistent solution to the problem. This
is not the case when one assumes a linear relationship between
s and L.
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Figure 6.3: SEGREGATION WITH COMPLETE LIQUID MIXING AND SOME
SOLID-STATE DIFFUSION. When mass transport in the liquid is very rapid, due to
the effect of conveection, the diffusion boundary layer will be greatly reduced and
contain only a small amount of excess solute, the difference being redistributed
evenly over the entire volume of liquid. In this case, there will be an interaction
with the far end of the crucible during the whole solidifieation process, and the
entire solute distribution will essentially be a long terminal transient beginning at
the solid concentration, Cok. This behaviour is described by the 'Scheil' equation
and predicts an infinite concentration at the end of solidification. In practice,
eutectic solidification usually intervenes. In order to obtain a more realistic
description of the concentration profile at this point, solid-state back dif fusion
must be taken into account, especially in the final stages of solidification where z’
approaches L. Here, the concentration gradient in the solid becomes very large.
This can be done by using a simple mass balance. Thus, the solute rejected from
the solid (represented by surface A]) over the distance, dz', will partially
increase the uniform liquid concentration by dC,(surface Ag), and this in turn
will increase the interface concentration and the associated concentrution
gradient in the solid, and therefore the flux into the solid (surface Aj). Mass
conservation requires that the sum of the quantities described by the three
surfaces must be zero. If diffusion in the solid is very rapid (e.g. C in delta-Fe),
the boundary layer, 8g, in the solid will be very large. In the limit, due to
interaction with the initial boundary of the system (z'=0), the conecentration
gradient in the solid will be decreased, leading, for the extreme case of infinitely
rapid back-diffusion, to equilibrium solidification (lever-rule). In this case, an
homogeneous solid, with composition C,, will result after the completion of
solidification. The extent of back diffusion will depend on a dimensionless
parameter, &, which can be regarded as describing the ratio of the diffusion

boundary layer in the solid,vgww'wg ﬁ%jg%[\}g‘a systems Lo
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Ct = (1 - uf)P/u
g = (-uty (6.9)

where u=1-2a'k, p=1-k, and CS* can be obtained directly from Cg* =kC,- The
parameter, ¢¢', can be calculated from:
= 1 1
o' = afl - exp(-gg)) - 0.5 exp(-é—&—) {6.10]

where the dimensionless dif fusion time (Fourier number) is:

Dgtf
o= [6.11)
L2

The behaviour of «' is such that, at small x-values (less than 0.1), &'= ¢, and at
large or-values (greater than 50), &' = 0.5 (figure A11.3).

Substituting these limiting values of &' into equation 6.9 leads to two well-known
equations. When « is equal to zero, (' is also equal to zero (no solid-state diffusion

takes place) and:

g; = (l_~lfs75 = i— (6.12]
This is known as the 'Scheil equation'.
On the other hand, when o approches infinity, Q' becomes equal to 0.5 and this
implies that solidification will occur under equilibrium conditions. That is, solid-state
back-diffusion is so rapid or the solid-state diffusion boundary layer, 55, is much
greater than L that, as in the case of the liquid, the insulating effect of the solid
specimen end also smoothes out any concentration gradient in the solid. This case is

described by the 'lever rule':

gz = l_-LEfs (6.13)
Figure 6.4 illustrates the behaviour of equation 6.9 for an Al-2%Cu alloy, including
the limiting cases described by equations 6.12 and 6.13. 1t is evident that the Scheil
equation is a very poor approximation with regard to the final liquid composition,
since the maximum liquid concentration, C{“, is infinite. On the other hand,
equilibrium solidification according to the lever-rule case, which leads to a final
liquid concentration, C{"=Colk, is again unrealistic for most solutes because of
their low solid-state diffusivity. However, there are very important exceptions such
as those of interstitial solutes, especially in open crystal structures and small systems
(e.g. interdendritic segregation of C in delta-Fe). The latter dif fusion coefficient is
Www.iran]rzr;avad.com
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so high that «a-values greater than 100 are found. Knowledge of the value of Cin also
permits the temperature of the remaining liquid to be calculated from the phase

diagram (figure 6.5).

30 ——
k = 0.14

a = 0.__

m
(Scheil) C, (a's 0.2)

t

20¢

o' - 0.5
(lever)

CL (wt%)

10+

Co

fs

Figure 6.4: SEGREGATION CURVES IN THE PRESENCE OF BACK DIFFUSION.
The composition of the liquid (assumed to be homogeneous as in figure 6.3)
increases at the end of the specimen. Under lever-rule conditions, the increase is
from C, to Cy/K, while the Scheil equation predicts an increase from C, to
infinity. All of the intermediate cases can be described by one relationship
(equation 6.9) which contains a modified a-parameter, o', which can take values
between 0 and 0.5. Note that the curve represents the path of the interface
concentration, C¥, as & function of fs. The final solute distribution profile in
the solid cannot be determined in this way because it changes with time when
a>0. Therefore, only the end concentration (fg=1) represents a measurable
value.

6.6 Microsegregation

So far, solute distributions have only been considered for the case of relatively large
systems under directional solidification involving planar solid/liquid interfaces
(figure 6.3). Because of the simplicity of such a unidirectional system and the
approximations made, the equations derived are simple. The situation becomes
extremely complex when the previously used approaches are applied to dendritic
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solidification. Large simplifications must therefore be made in orde. 0 make such
problems tractable,

Firstly, the case of dendritic solidification in the columnar zone of a casting is
considered (figure 6.6). The mushy zone, of length &, is defined as the region within
which liquid and solid coexist at various temperatures corresponding to the different
concentrations due to solute redistribution. The zone length, a, is proportional to the
non-equilibrium solidification range, AT', which is usually larger than the equilibrium
melting range, AT (figure 6.5).

In order to apply a mass balance, it is necessary to simplify the dendrite form in two
respects. Firstly, it is assumed that there are no side-branches and, secondly, that the
dendrite is plate-like rather than needle-like. 1t is now assumed that 'directional

700

r a' .08
- (lever)
o 800 | o . 0.2
g 'a O
‘ = (uSchcil)
—f Jo—
Co= 2% f.|
k = 014
500 .
(o} 05 1 20 40

fs C (Wt%) —s

Figure 6.5:¢ RELATIONSHIP OF THE SEGREGATE FREEZING POINT TO THE
PHASE DIAGRAM. An increasing concentration (for distribution coefficients less
than unity) is associated with a decreasing liquidus temperature since the slope,
m, is then less than zero. Using the curves of figure 6.4, the temperature of the
liquid as a function of volume fraction solidified can be derived. The use of
realistic diffusion coefficients shows that, for small systems (such as
interdendritic regions - figure 6.6) interstitial C in delta- and gamma-Fe will
behave according to the lever-rule. Hence, the last liquid of a binary Fe-C melt
will solidify at a temperature close to the solidus while substitutional alloys, such
as Al-Cu, which typically have much smaller solid-state diffusion coefficients will
usually contain eutectic material in the last (interdendritic) regions to solidify
even when the overall composition is less than the solubility limit at Te.
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solidification' is occurring in an infinitesimally narrow volume element between, and
perpendicular to, two dendrites (figure 6.6). All of the relations which were developed
before can now be applied in an approximate manner to the interdendritic region,

where the solidification time, te is (equation 4.20)

A 't
tg=- T
where the negative sign arises due to the negative value of T, the cooling rate. The
length of the volume element is then, L= )\1/2, and AT'=m(Ci"-C{n), where
Cin corresponds to the composition of the last liquid. Substituting these values into
equation 6.11 gives:

A1/2

Figure 6.6: CHARACTERISTICS OF THE MUSHY ZONE 1IN COLUMNAR
GROWTH. Applying the macroscopic directional solidification system of figure 6.3
to the cellular structure of a casting, it becomes a small volume element which
solidifies at right-angles to the growth axis of the alloy. An increase in the
concentration or a decrease in the liquidus temperature of the remaining liquid
shown before can thus also be applied qualitatively to the mushy zone of a
casting. Here, fg is now the local volume fraction of solid in the two-phase
region with z'=0 at the centre of the cell trunk (corresponding to the position of
the infinitely narrow volume element at the cell tip where fg=0) and
z'=L= A]/2 at the last interdendritic liquid (corresponding to the position of
the volume element at the cell root with fg=1). In the case of dendrite growth
with secondary branching, the characteristic back-diffusion distance is not
\/2 as in cells, but instead, Ag/2.
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4Dgm(C¥ - C[M)
NT

Under most conditions the dendrite tip concentration, Ci" is very close to C0 while

{6.14)

can depends markedly on «, and can be obtained from equation®6.9 with fs=l.

Thus:
c” = ¢ ak P/ (6.15)

Considering now the dendrite form of figure 6.7, the back diffusion process, which is
most marked at the end, will occur principally between the secondary arms and not
between the primary trunks. Therefore, except in the case of cellular growth, where

)\l is the characteristic spacing, )\2 would be the appropriate dimension for
most castings. This dimension is also important in equiaxed solidification, which is

always dendritic in nature. 1t is known that (equation 4.18):
_ 1/3
Ny = 5.5 (Mt

So that the (¢-value for dendrites is deduced to be:

a=0.13 p ar! By 23 |71/ (6.16)

where M is defined by equation4.19. Because AT' depends on &, and this in turn
depends on AT', the calculations have to be performed in an iterative manner,
substituting for the initial AT = ATo’ To a first approximation, one can also
substitute for AT'= ATo’ leading to a constant value for the ripening parameter:

—-2I'D In [k] (6.17)

Y
M ATp

When C{n is greater than Ce, precipitation of the eutectic will generally occur
and its volume fraction, fe’ can be calculated using equation 6.9, knowing that fe

=1 - fs (for Ct=ce). This shows that:

fo =(5)[u -1 +(go /e (6.18)
e

In multicomponent systems, the 'path of solidification' is more complicated due to the
greater number of variables. In appendix 11, an example of such a situation is given
for a ternary system. Futhermore, the practically important case of post-diffusion
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homogenisation of interdendritic segregation is also treated. These equations permit
an estimation of the degree of microsegregation existing after cooling a casting to
room temperature and also of the time required to reach a certain degree of
homogenisation during a given heat-treatment process.

Therefore, given the temperature gradient and the growth rate, the most important
characteristics (CLm, fe’ ATY, )‘l’ and )\2) of the solidified structure can be
obtained approximately. That is, the solidification microstructure as well as the

microscopic inhomogeneities in chemical composition can be determined.

fel

T,(Cx) g
AT,
Te(Co)

e —
1 non~equitibrium

mush zone
- y

Figure 6.7: MICROSEGREGATION. The equilibrium melting range, a T, does
not, except for the lever rule case, correspond to the range, aT', over which the
mushy zone develops. The dendrite tips need a certain undercooling which is
determined by the stability of the tip. The dendrite roots will usually have much
higher concentrations than Cg,/k, due to non-equilibrium solidification. This
often leads to interdendritic precipitation of eutectic phases of volume fraction,
fe, even if the composition is not on the eutectic tie-line. In the columnar zone
of a casting, as shown here, the volume fraction of solid, f5, will follow an
S-shaped curve like that in the uppermost diagram.
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EXERCISES

write an equation for the T*-f  relationship for the Lever rule and Scheil

equation cases.
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Determine &'values for Al-2wt%Cu and ~Fe-0.09wt%C alloys when
tg=10s. Which system exhibits the greater tendency to segregate? (To
obtain an estimate for )\2 use figure 4.17 for both alloys)

1t is desired to purify part of a cylindrical metal ingot by directional
solidification. What conditions are most favourable: a short initial transient or
Scheil-type solidification? What interface morphology is required in order to
accomplish this? Give the maximum growth rate which can be used.

Devise a method for estimating part of the phase diagram (m,k values) of a
transparent organic alloy by solidifying it under planar interface conditions at
the limit of stability and observing it with a microscope. Indicate how one
might perform the experiment (see figure 6.2). 1t is assurned that the values of

CO and D are known.

What will happen if the rod in figure 6.1 is solidified under conditions of strong
convection? Sketch the solute profile and indicate which equation applies to
this situation.

In what respect is equation 6.3 an approximation to the initial transient?
Examine the assumptions made concerning the boundary layer for the transient
(see appendix 10 and figure A2.4)

Describe a method for the production of a control sample of a given
composition for use in microprobe measurements. Such a standard should
present a composition to the electron beam which is homogeneous at a scale of

the order of 1 um.

Write the equation, given in this chapter, which describes approximately the
concentration variation along the curved interface of figure 6.6 under growth
conditions where the tip concentration in the liquid, Cf, is approximately
equal to Cyr In what region would one expect the concentration gradient,
perpendicular to the solid/liquid interface, in the liquid to be (a)close to zero
and (b) not zero?

Indicate, with the aid of figure4.12, the growth rates for which, in an
Al-2wt% Cu alloy, no intercellular or interdendritic enrichment (segregation)
will occur for (a) G=0 and for (b) G = 1K/mm.

www.iran-mavad.com
136

Age medize 9 Olgedil @2 ye



6.10

6.12

Why is equation 6.9 incorrect (under the original assumption that u = 1 - 2ak)
ifoe =1? What happens in this case? Sketch the solute profiles present in the

solid and liquid under these conditions. Compare with figure A11.2.

Compare tlie fractions of eutectic predicted by the Scheil equation, by the
Lever rule, and by equation 6.9, in the case of Fe-0.6wt%C and Al-2wt% Cu.
Discuss the differences. For o', use the same conditions as those assumed in

exercise 6.2.

Zone melting is a process in which the tendency to segregation is exploited in
order to produce a solid having a high purity. In practice, this is done by
causing a molten zone with planar solid/liquid interfaces to pass many times
through the material (figure). The equation for the impurity distribution after
the first pass with strong mixing occurring in the liquid zone (C,= constant) is:
C/C, = (1201 = (1-k)exp(kz/L)}, where L is the zone length. Discuss this
equation with regard to the equation for the initial transient (equation 6.3)
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SUMMARY

As outlined at the beginning of this book, the study of solidification microstructures
is of increasing importance in the field of engineering since the properties of most
alloys, whether cast, forged, or welded, will depend to a large extent upon the degree
of control which can be exercised during solidification. Furthermore, various new
solidification processes are currently offering signs of great future potential. These
include the enlargement of the equiaxed zone by means of the electromagnetic
stirring of castings, surface remelting and alloying by high-energy beams such as
lasers, directional monocrystalline casting, and other techniques. Therefore, there is
a need for a better understanding of the common mechanisms associated with this
important phase transformation.

1t has been the aim of the authors to describe, from an engineering point of view, and
via the use of simple physical models, some of the most important solidification
phenomena which occur. The latter range from atomistic to macroscopic in scale.

In the introduction, the importance of heat flow phenomena has been pointed out.
Currently, the range of cooling rates employed is from 10_5 to 10'9K/s and
corresponds to 'castings' ranging in size from several metres to a few micrometres.
These various cooling rates produce differing microstructures which can be divided
into four categories, i.e.: (a)columnar and (b)equiaxed grains of (c)dendrites or
(d) eutectic.

In each of these cases, capillarity effects and the diffusion of solute and/or heat
determine the microstructure which results from the solidification conditions.

As far as solidification at the atomic level is concerned, two phenomena: nucleation
and interface structure, have been described. Nucleation is a predominantly
interface-controlled process involving an activation energy which is strongly affected
by the presence of a catalyst. The nucleation rate, and therefore the equiaxed grain
size, is very sensitive to the existence of heterogeneous particles. From the
well-known laws of nucleation, the time-temperature-transformation (TTT) diagram
for the solidification of a substance can be derived. This permits, among other things,
an explanation of the amorphous phases which can be produced by rapid solidification
processes.

The interfacial atomic attachment kinetics determine the ecrystal morphology.
Substances such as metals, which have a low entropy of melting, grow in a
non-faceted manner. Some organic substances which behave like metals in this
respect are especially useful for the insitu observation of solidification using an
optical microscope. On the basis of such observations, the likely behaviour of a
metallic system can be deduced without the difficulties posed by the opacity,
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reactivity, and high melting point of metals. In substances having a high entropy of
melting, the crystal growth behaviour is largely determined by growth defects. These
play a decisive role in the growth of irregular eutectics, such as the most important
casting alloys (Al-Si, cast iron).

On a larger scale, the first phenomenon which becomes apparent is the morphological
instability of solid/liquid interfaces, which occurs on a scale of the order of
micrometres. This is associated with a characteristic range of wavelengths and is
only a transient stage in the development of the steady-state growth forms of cells,
dendrites or eutectics.

Equiaxed grains of pure or alloyed materials are inherently unstable when their
diameter exceeds a critical value (of the order of some micrometres). On the other
hand, columnar grains are always stable (plane front growth) in pure samples and can
be stable in the case of alloys if the temperature gradient is sufficiently high. At
very high growth rates, the onset of so-called absolute stability will lead to the
occurrence of solidification involving a structureless solid/liquid interface.

The most frequently observed solidification microstructure is the dendrite. This
steady-state growth morphology is characterised by its paraboloid-like tip and by the
formation of branches only along simple low-index orientations. The growth of these
crystals is determined by the following diffusion phenomena: thermal (equiaxed
growth of pure substances), solutal (columnar growth of alloys), and thermal/solutal
(equiaxed growth in alloys). The solution of the diffusion equation, combined with a
stability criterion, leads to a unique description of dendrite tip growth.

In the case of columnar growth, the imposed positive temperature gradient constrains
the dendrites to grow in the form of arrays having a characteristic primary spacing,
)‘l‘ During growth, the length of contact time which the initially fine branches
have with their melt causes ripening to occur to such a degree that the final branch
spacing, )\2, is very much greater than the initial one at the tip.

As far as eutectics are concerned, there are two types of microstructure: regular and
irregular, whose occurrence depends upon the entropy of melting of one of the
phases. Regular structures are typically exhibited by phases having a low entropy of
melting, and grow in a steady-state manner, whereas irregular structures (in which
one phase is faceted) oscillate between two operating points. As in the case of
dendrites, the combination of the diffusion solution with a criterion which decides the
operating point of the system leads to the deduction of the growth law. Eutectic
microstructures store an appreciable fraction of their transformation energy in the
form of /B interfaces (which are usually those having the minimum energy).

The competitive growth of eutectic and dendrites will lead to mixed microstructures

which can be summarised with the aid of the so-called coupled zone.
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Peritectic reactions develop around dendrites in the form of interdendritic
precipitates.
Any local equilibrium between two phases will result in concentration differences

which are necessary in order to satisfy thermodynamic requirements. These
differences create local concentration variations which are known as segregation. In
the case of a dendritic interface, solute concentrations are built into the
interdendritic regions. Back-diffusion into the solid dendrite plays an important role
in governing the magnitude of the composition of the last liquid to solidify.

The coupling of microstructural models with segregation models, and their
incorporation into heat-flux calculations, today permits a semi-quantitative
description and understanding of diverse solidification processes occurring over a
wide range of conditions. In the future, it will be possible to relate the
microstructural models presented here, together with others yet to be developed, to
multidimensional, macroscopic heat flow calculations. In this way, the much-needed

superior control of solidification processes will be made feasible.
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APPENDIX 1

MATHEMATICAL MODELLING OF THE
MACROSCOPIC HEAT FLUX

Differential Equation

The equation describing heat flow can be obtained by considering the heat balance in
an infinitesimal element (figure Al.1). In Cartesian coordinates, the balance can be
written {1 - 3] (§):

5

i) i) i) i) . -
)+ —a—y(Ky?’%) +E (Kz—a%)-q(x,y,z) = a(g{)

i
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I C = —
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Figure Al.l

§ Here z is a system coordinate which, in the main text and in
appendix 2, is denoted by z'. The un-primed symbol is used here
in order to improve readability.
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where ¢ is an internal heat source term (W/m3) and c is the volumetric specific
heat (¢ = cpp). Using the Laplacian operator:

V(KVT) - g = a‘g;“) (Al.1]

The negative sign on the left-hand side of equation Al.1 arises because ¢' is

proportional to Ahg and the latter is negative for solidification. When the thermal
conductivity, K, and the specific heat, ¢, are constant:

27 - i’ = aT
aV+¢T ° 3t
where a= K/c. Only unidirectional heat flow conditions are considered in the present
appendix, and in this case:

2r
b - 3= otT {Al.2]

Analogous equations can be written for cylindrical and spherical coordinates, and, in
the absence of tangential heat flow, the problem reduces to the consideration of one
direction:

2 ' .
a (g + @30 dl - &1 (A1.3)

where n is equal to 2 for spherical coordinates, to 1 for cylindrical coordinates, and
to 0 for a plate geometry. The latter case leads to equation A 1.2,

General Solutions for Semi-Infinite Systems

Neglecting heat generation for the moinent, equation A1.2 can be written:
a2r _ art
amz 5t 1<z oo {A1.4]

(When a is replaced by D and T is replaced by C one obtains the equation for mass
diffusion.) One possible general solution of equation Al.4 is:

T(z,t) = A + B erf(Z) {Al.5]

where A and B are constants and

- Z
Z = mo_s [AI.G]
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The error function, erf, and its complement, erfc (which may be a better choice for
problems involving heating), have the properties (figure A1.2)§:

erflol =0

erfloo] = 1

erf(-Z] = -erf{Z]
erfe(Z] =1 - erf(Z]
erfel-Z] = 1 + erf(Z]

dlerffz]) _ 2 7.2
SeL Sl = 2 exp(-Z-] {Al1.7]

With the aid of a programable calculator, the error function can easily be determined
by using the series (4]

Xy ,2n+1)
erf(4) = ﬁ% Z%\Tfr {A1.8]

-0
———— | E1(2) R
1 T~
_ f erfc(Z)
N
F N\
8|
x
-~ 10‘2r
N
S
o erf(Z)
1074
1074 1073 1072 107 1 10
z

Figure Al.2

§ The exponential integral, Ej, which is also plotted in
figure A1.2 will be used in appendix 7 (equation A7.16)
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Exact values of erf(Z) are given in table Al.l. Some useful approximations are:

erf(Z) = 4/1 - exp(- %2)

erf(Z) =1 Z>2

erf(Z) = % 7 <0.2

In order to demonstrate that equation Al.5 is a general solution of equation Al.4, one
can use equation Al.7, so that:

oT Bexp(-Z2]
9%~ (7ran)0.5
Table Al.l: VALUES OF THE ERROR FUNCTION (4]

Z erf(Z) Z erf(Z) Z erf(Z) Z erf(Z)
0.00 0.0000 0.26 0.2869 0.52 0.5379 0.78 0.7300
0.01 0.0113 0.27 0.2974 0.53 0.5465 0.79 0.7361
0.02 0.0226 0.28 0.3079 0.54 0.5549 0.80 0.7421
0.03 0.0338 0.29 0.3183 0.55 0.5633 0.81 0.7480
0.04 0.0451 0.30 0.3286 0.56 0.5716 0.82 0.7538
0.05 0.0564 0.31 0.3389 0.57 0.5798 0.83 0.7595
0.06 0.0676 0.32 0.3491 0.58 0.5879 0.84 0.7651
0.07 0.0789 0.33 0.3593 0.59 0.5959 0.85 0.7707
0.08 0.0901 0.34 0.3694 0.60 0.6039 0.86 0.7761
0.09 0.1013 0.35 0.3794 0.61 0.6117 0.87 0.7814
0.10 0.1125 0.36 0-3893 0.62 0.6194 0.88 0.7867
0.11 0.1236 0.37 0.3992 0.63 0.6270 0.89 0.7918
0.12 0.1348 0.38 0-4090 0.64 0.6346 0.90 0.7969
0.13 0.1459 0.39 0.4187 0.65 0.6420 0.91 0.8019
0.14 0.1569 0.40 0.4284 0.66 0.6494 0.92 0.8068
0.15 0.1680 0.41 0.4380 0.67 0.6566 0.93 0.8116
0.16 0.1790 0.42 0.44175 0.68 0.6638 0.94 0.8163
0.17 0.1900 0.43 0.4569 0.69 0.6708 0.95 0.8209
0.18 0.2009 0.44 0.4662 0.70 0.6778 0.96 0.8254
0.19 0.2118 0.45 0.4755 0.71 0.6847 0.97 0.8299
0.20 0.2227 0.46 0.4847 0.72 0.6914 0.98 0.8342
0.21 0.2335 0.47 0.4937 0.73 0.6981 0.99 0.8385
0.22 0.2443 0.48 0.5027 0.74 0.7047 1.00 0.8427
0.23 0.2550 0.49 0.5117 0.75 0.7112 1.30 0.9340
0.24 0.2657 0.50 0.5205 0.76 0.7175 1.80 0.9891
0.25 0.2763 0.51 0.5292 0.77 0.7238 2.00 0.9953
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and

92T Bzexp(-Z2]
0z2 =~ 2(wa3t3)0.5

The time derivative is:

T Bzexp{-Z2]

t 2(7at3)0.5

Substituting the latter two expressions into the differential equation (Al.4) shows
that the error function is indeed a solution. Other solutions might be T = A + B erfc{Z]
or T=(1/¥Dexp(-Z2]. The choice of the solution (essuming that one exists) will
depend upon the boundary conditions.

The Moving Boundary Problem

As figure Al.3 indicates, several regions exist in a casting; each of which exhibits a
specific thermal behaviour. These include the mould, the air-gap, the solid, the mushy
(solid plus liquid) zone, and the liquid. The solution of the general problem is
therefore very complex. For this reason, attention will here be restricted to one
simple case only.

Simple Analytic Solution

Under the simplifying assumptions of highly-cooled mould, planar solid/liquid
interface, and zero superheat, the boundary conditions (figure A1.4) are:

Tm = To = constant 0>z>-00

T, = Tf = constant Z>s

where the interface position on the z-axis is given by the function, s(t). The
temperature in the solid can be determined with the aid of equations A1.5 and Al.6,

giving:

- z
Ts = As * Byerflgd o 51 (A1.9]
z=0 Ag =Ty
Tt - To
z=s By —— {Al.10]
erf(P]
where
s
2_(a_st)0-5 {Al11]
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Figure Al1.3
Since Tg and T, are constant (figure Al.4), ® is constant and
2
= 0.5 = S
s = 2d(agt) or U= Za.d? {Al.12]

In order to determine the value of q), it is necessary to consider the (Neumann)
boundary condition (appendix 2) which refleets the heat flow at the solid/liquid
interface: the latent heat generated during interface advance must be conducted
away through the solid, giving the flux balance:

ds _ T
angds = Ks(g_zs Yas (AL.13]

From equation Al.12:

=9 _  Jjas.
v 1/t P {Al.14]
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To

Z —
Figure Al.4
while from equation Al.9 at z =5,
Bgexp{-$?]
G= (%l;s)z=s T ee—
(ﬂ'ast)o-s

Combining with equations Al.12, A1.13, Al.14:
AT = VT Perf(P) exp(P?) (Al.15]

where the dimensionless temperature, ATg® is_ equal to (Tg-Ty)eg/Ahg.
Evaluation of ATg® permits the calculation of & by iteration and, using
equation A1.12, the position of the interface as a function of time can be found to
obey a square-root law. For typical values of ATg° ranging from 0 to 4,
equation A1.16 can be approximated quite well by (figure A1.5):

ATg® = 2P2(P2 + 1) (Al.16]

A more general solution, which permits a better description of the real situation
shown in figure Al.3, has been given by Garcia et al{5,6]. An analytical treatment
which takes account of the mushy zone has been developed by Lipton et al [7].

Numerical Method with Mushy Zone

When describing such complex cases, analytical methods lose their main advantage of
simplicity. Instead, numerical calculations are of .greater value. In fact, the
calculation of the moving (mushy zone) boundary, which varies in width with time,
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has only been published for the one-dimensional case[8,9]. A summary of that method
Is given here. Thus, substituting the rate of latent heat release:

= af
' = XS .
q Ahg fA1.18]

into equation A1.2 gives:

02T _ OT,  Ahs, Of
a%e " F+(_c_i').7,"_ts {Al1.19]

For alloys, the volume fraction solidified, f5, is a function of the temperature.
Therefore:

9fs - (Ofsy ATy 1
—a_ts = (ﬁ)(m_fsT {Al1.20]

One can thus write for the cooling rate (after substituting equation Al.20 into
equation A1.19):

(370
. - z
T o= __(O_Aﬁ_) (Al.21]
C

1+ 1
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Coinpare this equation with equation 1.2. Putting equation Al.21 into finite
difference form (appendix 2):

Tij+1 + Tj-1 ~ 27T

i i i

0T = Fg —————— (Al.22]
1+ (A

where Fo = Ota/6z? is a dimensionless constant known as the Fourier number, @
= agfs + a;fy, and &€ = cgfs + cyfj. The latter two terms are the weighted
values of these properties in the mushy zone. Here, both Ahf and fg are
negative. For reasons of computational stability, the Fourier number (in the
one-dimensional case) must always satisfy the eondition:

Fo X 0.5

This can be achieved by the correct choice of the time and space steps. The
derivative of fg with respect to T can be obtained from the segregation equation
(6.9) by using temperature ratios rather than concentration ratios. This leads to:

fg = s Lyrg - 1, )W/P) 7y - Ty {up)/p] (A1.23]

1
JdT " p

where p = 1 -k, u = 1 - 2a%k, &' = afl - exp{-l1/al}~ 0.5exp(-1/2&] and « =
4Dgt/ N2,

Equation A1.22 is very general in form and can be used in all of the regions (t, t+s, s,
gap, mould). In the case of solidification of a pure metal or of an eutectic alloy,
fg'=00. This singularity can be avoided by increasing the specific heat of the
interface volume element accordingly or by delaying solidification of the interface
elements until the heat evolved during solidification has been transferred away.

The existence of convection in the liquid will often make some modification
necessary; for example, the use of a convective boundary layer, 0. This leads to the
boundary condition at the dendrite tips:

o _
%1; - TL——é T* [Al.24]

where 'l‘L"° is the melt temperature far froin the tip and T* is the tip temperature.
Furthermore, heat transfer across the gap between the mould and the solidified metal
is usually treated by assuming a heat transfer coefficient:

q=hATg {Al.25]

where ATy is the temperature difference across the gap.
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APPENDIX 2

SOLUTE AND HEAT FLUX CALCULATIONS
RELATED TO MICROSTRUCTURE FORMATION

The literature of solidification microstructure theory, especially in recent times, has
become highly complex and different mathematical methods have been used in
developing the various models. However, it is the point of view of this book that a
reasonably accurate result, which reveals the principles involved and the influence of
the physical variables, can be obtained for any problem by using a coherent approach.
In fact, exactly the same general principles apply to all solidification problems and
the various published analyses differ only with respect to the approximations which
are made, and to the weight which is given to various aspects of the problem in
question.

The most common approximation which is made is that solidification is ocecurring
under steady-state conditions and that, therefore, the concentrations and solid/liquid
interface morphology are independent of time. The principal disadvantage of this
assumption is that no evolution of the interface shape can occur. The result of this
constraint is that the solution to the basic diffusion problem is indeterminate and a
whole range of morphologies is permissible from the mathematical point of view. In
order to distinguish the solution which is the most likely to correspond to reality, it is
necessary to find some additional criterion. Examination of the stabilities of a
slightly perturbed growth form is probably the most reasonable manner in which to
treat this situation.

In the present appendix, one aim is to supply the reader with mathematical
techniques which are sufficient to attack the problems of microscopic heat and mass
transfer which are treated elsewhere in the book. Another aim is to provide the
reader with a general and systematic method for approaching steady-state
solidification problems.

The general features of a solidification problem can be deseribed as follows: a
solid/liquid interface whose form is defined by a given mathematical function
containing one or more variable parameters, is assumed to be advancing without
change into the melt. As it advances, heat and/or solute are evolved at each point of
the interface and diffuse into the solid and the melt. The diffusing solute will build up
ahead of the interface when k=<1 and form a boundery layer, while a uniform level,
Cos Of the solute is supposed to exist at a sufficiently large distance from the
interface. The boundary layer can be characterised by the ratio of the diffusion
coefficient to the growth rate. Typical orders of magnitude of the equivalent
boundary layers for a planar interface are shown in table A2.1. From this, it is seen
that the boundary layer thickness for mass transfer of substitutional elements in the
solid is so small as to be negligible (§), while the boundary layer thicknesses for heat

§ An exception is the case of microsegregation where, even for
substitutional solutes, solid-state diffusion plays an important
role due to the very high concentration gradients existing in the
last stages of solidification (appendix 11).

www.iran-mavad.com
153

Age medize 9 Olgedil @2 ye



Table A2.1: EQUIVALENT BOUNDARY LAYERS FOR A PLANAR INTERFACE

Type of Diffusion Dif fusing Species Matrix Layer Thickness (mm)
at V=0.0lmm/s
solutal: dp = 2D/V substitutional atom  ecrystal 1074
interstitial atom crystal 10°!
either liquid 100
thermal: §¢ = 2a/V heat crystal >103
liquid >103

transfer (at low growth rates) in the solid or liquid are much larger than the scale of
most castings. Convection must also be considered since the presence of a
hydrodynamie boundary layer will reduce the thickness of the thermal boundary layer.

Differential Equation for Diffusion

In view of the previous arguments, attention will be restricted here to solute
diffusion occurring in the liquid. For simplicity, the suffix, t, will be dropped from
the concentrations since these always refer to the liquid in the present appendix, that
is C; =C. The equation governing any dif fusion process is:

2 2c 2c 1 C
55+ %%+ 55 15 [A2.1]

Equation A2.1, which is analogous to equation Al.l but with a zero heat source term,
applies to three dimensional space, but the problems treated in the present book
require the consideration of no more than two space dimensions:

2 2
B . 5. )30 o
www.iran-mavad.com
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A problem can often be simplified by using a suitable coordinate . .em. For
example, in spherical polar coordinates (§) equation A2.1 becomes (1 - 3]

1

cot[ 1] oL =
¥ rl Co * r25in2(@] cwd’ pCt

2 1
C"."' ;Cr*‘ ;2 CBB

where 0, Y, and r are the equatorial and azimuthal angles, and radial distance,
respectively, and the suffix notation has been used for greater clarity. When the
diffusional behaviour is independent of the angular orientations, 0 and Y, this
equation becomes:

where n =2. Further reductions to the equation for a cylindrical or plate geometry
can be obtained by replacing n in the above expression by unity or zero respectively.
Thus, the steady-state growth of a sphere is governed by:

The principal characteristic of the diffusion equation is its conservative nature;i.e. it
acts so as to even out any irregularities. This can be seen firstly by considering the
one-dimensional equation for rectangular coordinates:

2
%202 - {_)_g.tC_ {A2.3]

Note that the left-hand-side is the expression which defines the sense of the
curvature of a function. Thus, when the second derivative is positive it denotes a
concave-upwards part of a function. In the present case, it would correspond to a
local minimum in the concentration distribution. However, from equation A2.3, the
local change in concentration with time is also positive and therefore the depression

§ For other coordinate systems, see reference 3. In principle,
any interface shape can be given a suitable system of
coordinates. However, this would be pointless unless the
resultant transformed differential equation could be separated.
This can only be achieved in some eleven systems, including the
cylindrical, spherical, and parabolic. The latter system is very
useful for treating dendrite tip problems.

www.iran-mavad.com
155

Age medize 9 Olgedil @2 ye



a3c a2c
+

dy? 8=z2

(C3-Co)-(Cp-C,)  (C4-Cg)-(Co-Cyp)
+

Ay? Az?

Cq1+4Csr+C C
Co=—1+—%—u Ay = Az

Figure A2.1

in the concentration distribution will tend to be removed. The reverse is true for
negative values of the left-hand-side. The conservative nature of the
two-dimensional, time-independent (Laplace) equation can also be seen clearly from
the finite~difference scheme (figure A2.1) where each cell must take a value which is
the average of the values of the four surroundmg cells. A little reflection will show
that the only 'bumps' which can persist, in this steady-state situation, are thosé
imposed by the boundary conditions. Finally, it can be proved that the direction ol
flow of heat or mass at any point is at right-angles to the isotherms or
isoconcentrates. It is less well known that both the isotherms and flux lines can be
drawn by inspection, without ever solving the diffusion equation. Unfortunately, this
'flux-plotting' technique [4] does not work well for solidification problems because
the complicated boundary conditions which are usually imposed.

Directional Growth Equation

Equation A2.3, which is known as Fick's second law, would be of little use in treating
moving boundary problems because the interface movement would have to be
accounted for. Instead, an equation expressed in a coordinate system which moves
with the interface can be used. In figure A2.2, the coordinates of the point, P, with
respect to axes moving with the interface are (y z). Its coordinates with respect to &
stationary observer are (y',2'). From the diagram, it is evident that:

7z =z -Vt [A2.4]

Since 9z/0z = 1, 0C/dz = (0C/02)0(0z/0z") = 0C/dz, and similarly,
02c/822 = 02C/02z2, the left-hand-side of equation A2.3 is unchanged.
Www.iran1mavad.com
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Figure A2.2

The concentration is a function of z' and t, but must be transformed so as to become
afunction of z(t) and t. Therefore, using the 'chain rule' for differentiation,

dc _ 9c  dz , Oc
at -~ 9z ~dt T Jt

From equation A2.4, dz/0t=-V and equation A2.3 becomes:

d92c ac

D 622 :_V—a—z + [A2.5]

mlq:
1S}

Re-introducing a second space coordinate (which is unaffected by the above
transformation of coordinates) in order to describe lateral diffusion, and rearranging
gives:

d2c 92 vV dcC 1 dc

ayz * 922" D' gz T D' gt
or, in its time-independent form (steady-state growth):
ac .
i 0 fA2.6]

This equation, which is known as the directional growth equation, will be used in
order to solve most of the problems in this book.
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Solutions of the Directional Growth Equation

The first step in solving & directional growth problem is to discover what functions
satisfy equation A2.6. These functions can then be used as the starting point in
solving any problem (in rectangular coordinates), and an exact solution would be
obtained if all of the boundary conditions could be satisfied everywhere.

It is assumed firstly that the solution of equation A2.6 can be expressed as the
product of separate functions of y and z alone {1 -3]:

Cly,z) = Y(y) Z(z) {a2.7

Inserting the relevant derivatives of this expression into equation A2.6 gives:

d2y
v2

a2z, vV a7z _
Z+ EigY* D dZY—O

and dividing throughout by Cly,z) gives:

Y 1 d2z vV 1 dz
+ Lk =0 {A2.8]

S ie
a.|o.
< | ™o

Each term which involves y or z alone must be equal to a constant known as the
separation constant. This can be seen by considering the term in Z for instance: either
it is a constant or it is a function of z. In the latter case, the other terms in
equation A2.8 must be functions of z in order to satisfy the equation. However, this
contradicts the assummption that the functions each depend on only one variable.
Hence, each term is equal to a constant, a, and the sum of the constants must be zero
(from equation A2.8). The sign of the separation constant is determined by inspection
after considering the properties which the solution must have in order to reflect the
characteristics of the physical model. Thus, one can write:

1,922, v 1 4z _

Z' dz? ~ D'Z dz

a%z . v dz _ ., _

d_£2 T)-d—z—aJ—o [A2.9]

In the overall direction of advance of the interface (z axis), one expects the existence
of a boundary layer which is theoretically of infinite extent. This faect, together with
the form of equation A2.9 (i.e. a weighted sum of successive differentials) makes the
exponential function a likely candidate. Therefore, setting:

Z = expfbz] .[A2.10]

and performing the differentiations indicated by equation A2.9 gives:

b2explbz] + V—l;’ exp(bz] - a explbz] = 0
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The factor, exp{bz], cancels to leave:

b2 + lDQ—a=o

This quadratic algebraic equation is solved by elementary means to give:

=__v__ _Y2+
b=-2p- Vg e

The positive root is not considered because the solution to the problem might then
predict infinite values of concentration. The general solution to equation A2.9 is thus:

Z=exp[[—7‘£D -‘/(%))ha] z] [A2.11]

Considering now the term in Y (equation A2.8), one can set:

or:

2
%y% + ay =0 {A2.12]

The form of this equation suggests that the function to be substituted should be such
that its second derivative is of the same form as the original funetion. Both the
exponential and circular functions exhibit this characteristic, but it should be
remembered that the Y function must describe the concentration variation along the
interface. Due to the uniform or repetitive nature of the interface morphology
(figures 3.1, 4.14, 5.2), this concentration is not expected to deviate to a large extent.
Thus, an exponential function would not be suitable and a circular function can be
assumed to be more correct. Thus:

Y = cosfeyl or Y = sinfey] {A2.13]
Substitution of this expression into equation A2.12 gives:

c=+/2
and

Y = cosfa%-5y] or Y = sin{a0-5y) [A2.14]

Finally, substituting equations A2.14 and A2.11 into equation A2.7 gives:

C = cosla¥-Sylexp [[_ZLD_‘/(Z_Y)')z +a]l z] fA2.15a]
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or

C = sinfa¥-Sylexp [[—ZLD -4 ZLD)2 + a) z] (A2.15b 1

Exainination of the form of this equation shows that, overall, the lateral distribution
will be eyelic in form, and that the concentration will decrease exponentially away
from the interface in the growth direction (figure A2.3). Using the theory of Fourier
series, any number of cosine (or sine) functions can be added together in order to
satisfy the boundary conditions. Note that when the constant, a, is very large it will
dominate the exponential decrease of the boundary layer. When it is very small, the
boundary layer will be the same as that for a uniform plane interface. These two
cases correspond to a frequently varying lateral conecentration, and a slowly varying
lateral eoncentration respectively, since the value of a is inversely proportional to
the wavelength of the interface morphology. This is seen in the case of eutectic
growth where the rate of exponential decrease is dominated by the wavelength, and
the thickness of the boundary layer becomes proportional to the eutectic spacing
(appendix 9). When the scale of the interface morphology can vary over a wide range,
the full solution (equation A2.15) must be used. This situation arises when carrying
out stability analyses (equation A2.32, appendix 6).

Boundary Conditions

Three types of mathematical boundary condition are generally imposed on the
solution of a differential equation. These are the Dirichlet condition, which defines
the absolute value of the solution at a boundary point, the Neumann condition, which
defines the normal gradient of the solution at the boundary, and the Robin (mixed)
condition which establishes a relationship between the absolute value and the
gradient of the solution at the boundery. The latter condition is the main source of
difficulty in solidification problems because the interface concentrations and their
gradients are usually not given explieitly but must be found as part of the solution.
This condition, since it arises from the balance between solute rejection and diffusion
at the interface, will be called the flux condition. The other conditions will also be
given names which reflect their significance in solidification problems (figure A2.3).

Flux Condition

As a solid/liquid interface advances at the local normal growth rate, V,, with an
interface coneentration in the liquid, C*, and solid concentration, kC*, the quantity
of solute rejected per unit time will be V(1-k)C*. This must be balanced by the
creation of a concentration gradient in the liquid, normal to the isoconcentration
contours, which permits solute removal at the same rate via diffusion. Thus:

Vil -k)C*:-D-g—S1 {A2.16]
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m: normal to isoconcentrate
N normal to interface

Figure A2.3

One complication is that the normal to the interface, n, along which the interface
advances locally, is not generally the same as the normal, m, to the isoconcentration
contours in the liquid. Thus, in order to simplify the problem, the interface should be
assumed to be of uniform concentration (or isothermal). Otherwise, the flux condition
can only be applied on an axis of symmetry, where the two normals are bound to be
aligned. Such a point would be the tip of the perturbation shown in figure A2.3.
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Far-Field Condition

A Dirichlet condition can be imposed far ahead of the interface because here the
original composition is expected to be unaffected by the advance of the interface,

i.e.:

C=Cq z=0 (A2.17]

Symmetry Condition

Most interface morphologies consist of arrays of similar shapes. Advantage can be
taken of this fact by studying just one half-period of the shape along the y-axis. If the
shapes are presumed to be identical, there can be no mass transfer between them.
Hence, zero concentration gradient (Neumann) conditions can be imposed at the
boundaries of a typical interface 'motif*, i.e.:

y = “_%‘_ (A2.18]

Q;IQ;
<O
1]

o

wheren=0, 1, 2, ...

Coupling Condition

Under the normal solidification conditions for metals (V< 100mm/s), each location
along the interface will have a local freezing point which is a function of the local
concentration and the local curvature. In steady-state growth, each point of the
interface must lie on the corresponding isotherm of the temperature field:

T*=T +macC - ['K {A2.19]

Satisfaction of Boundary Conditions

In the last section, a general solution to the Laplace equation was obtained in terms
of elementary functions. It would be overly optimistic to expect any real situation to
involve boundary conditions which permitted such a solution to be used without any
further effort. Unfortunately, the greater part of the problem still lies ahead. Indeed,
the requirement that the basic solution (or its derivatives) should have certain values
at the boundaries of the region studied accounts for most of the effort expended by
applied mathematicians. Their researches over the past two hundred years have
produced an enormous range of methods for attacking the problem [2]. A number of
these methods, which are used elsewhere in the text, will be described below.

Firstly, two cases will be considered in which the boundary conditions can be satisfied

exactly.
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i) Steady-State Diffusion Field ahead of a Moving Planar Interface
As shown above, the diffusion equation in a coordinate system with its origin

fixed at the solid/liquid interface takes the steady-state form for unidirectional
diffusion {figure A2.4a) obtained from equation A2.6:

azc-i'!. =0
dz2 ~ D Pz

Noting the similarity of the above expression to equation A2.9, setting the
separation constant, &, equal to zero, and repeating the steps after
equation A2.10 above, gives:

Db2+ Vb=0

The solutions of this so-called ‘auxiliary' equation are b=0 and b=-V/D.
Therefore, the general solution is:

C= A+ B expl- %] (A2.20]

I 3
|
|
Z  — T T, Te
‘ !
B = ACO b
Q

—_— T Ts

Figure A2.4
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Again, fonowing the principles described above, a far-field condition is applied.
That is, far from the interface the concentration must be equal to the original
composition, C,. Lettlng C=C, when z tends to infinity shows that
A =Cq. Therefore:

C=Co+ Bexp[—%]

Next, one can apply the flux (Robin) condition at the solid/liquid interface.
Here, the rate of solute rejection must be equal to the diffusional flux in the
liquid at the interface:

cx(1 - WV = -D(39),

Therefore, when z = 0:

C*=Co+B
and

(8€) _,=-YB

dz 'z2= D

Substituting these expressions into the above shows that:

1-

B =ColiK

= ACO

Therefore, the complete solution for the solute distribution ahead of a planar
solid/liquid interface, advancing under steady-state conditions, is[5]:

C=Co+ (50 - Co) expl- L (A2.21]

The boundary layer shown in figure A2.5 is of infinite extent. In order to obtain
a convenient practical estimate of its thickness, an equivalent boundary layer,
Bc, is of ten defined. This equivalent layer is chosen so as to contain the same
total solute content as the infinite layer, and has & constant concentration
gradient across its thickness. Thus, the surface area of the triangle, OMN, must
be equal to the cross-hatched surface. That is:

C, 8 Vz
=Z0=C = A - 1=
) Cg exp[ D l1dz

and:
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—
ACo

z —
Figure A2.5
Differentiating equation A2.21 at z =0 gives:
= @ -0 = - _QL:OX
Ge=( g )z=0 T [A2.22)

From this, it can be seen that the absolute value of the concentration gradient
at the interface is equal to twice the absolute mean conecentration gradient of
the equivalent boundary layer. Such relationships are very useful in
understanding the constitutional undercooling criterion (chapter 3.3).

ii) Diffusion Field Around a Growing Sphere

When no tangential diffusion is occurring, the diffuslon equation can be written
in terms of the radial coordinate alone [6,7]:

2
'—C:D(%F%*

oo

dc
. ot ) 1A2.23]
where r is the radius. Under steady-state conditions,

9%y =9

A2
dr(r dr

the general solution of this equation is:
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C=A+ ‘l_—3 (A2.24]

For the situation deseribed in figure A2.6, the boundary conditions are:
C=Cq r= o

C=C* r=R

Use of these conditions shows that A=C, and B=R(C*-Cy).
equation A2.24 becomes:

C=Go+ Bicr-co) (A2.25]

The concentration gradient in the liquid becomes:

dC _ R
a - el -G

and, at the interface

dCy, . _C*-C
CFER=""=° (A2.26]

Figure A2.6
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This shows that, to & first approximation, the thickness of the bo. ury layer
around a growing sphere is equal to the radius and increases with increasing size
of the sphere. For other solutions see references 8 and 9.

Some methods which are available for the treatment of more difficult cases can
now be considered:

Classical Method

When using this method, advantage is taken of the linearity of equation A2.6. That is,
the sum of any series of terms having the same form as the basie solution (such as the
sine and cosine functions found previously) will also be a solution. This means that,
although the basie solution (often called an eigenfunction) is unlikely to satisfy the
boundary conditions, 'adjustment' using terms of the same form will allow the
conditions to be approximated more closely. For example, if the basie solution is of
the form, cos[2my/\], one can consider adding terms such as cos[4my/\], e.g.:

cly) = A[cos[z—‘{xl + Azcos[4—")r\l ]+ ... + Ajeosl 2—7;‘]1 ] [A2.27]

where the A; are constants. Because the oscillation of the cosine functions
increases in frequency with increasing value of i, finer and finer adjustments can be
made to the basic solution. In order to carry this out in practice, the constants before
each term in a series such as the one above are suitably chosen. Many methods have
been devised in order to find the required values of these constants. The best method,
but one which is rarely feasible, is to take advantage of the orthogonality of
functions such as the circular ones (sine, cosine). In this method, each term in the
above series would be multiplied by cos{27jy/A):

C(y)cos[2—1;\ji ] = Ajcosl 2—7;} Jeos( 2—7;"“ ]+ Agcosl i"{l Yeos( 2_7;\11]

+ A;cos[z—";\il ]COS[EE)\J.X ]

When both sides are integrated over one wavelength:

2n 2n .
fc(y)costg—’rllldy = A f cosl 2. Jeos[ 2TY jay
o ) . ) x

2n
+ Aozfcos[‘l—";\! ]cos[z—"%l]dy + e

2n N N
e Ajj;:os[z—";\]l ]cos[ﬂr-)i-! dy [A2.28]
0

all of the terms on the right-hand side will disappear unless j =i. Therefore, by setting
j equal successively to 1, 2, 3, ete, the value of any Aj cen be 'singled out’. A
general expression is usually obtained for all of the adjustable constants of the series.
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The reader should satisfy himself that if this 'trick’ were not available, the A-values
(Fourier coefficients) could only be determined exactly by solving an infinite set of
simultaneous glgebraic equations. Unfortunately, this is usually the case since the
above method can only be employed when the boundary coincides with a coordinate
line over whieh the functions are also orthogonal.

In response to this common difficulty, approximate methods have been developed and
will be described in the next section. Meanwhile, a relatively little-known technique
for obtaining the Fourier coefficients without integration will be deseribed. However,
this technique is only applicable when the boundary conditions are discontinuous in
some way. For example, see figure Al1.4 where the first and higher derivatives of the
concentration distribution are discontinuous at regular intervals.

In the case of a cosine series, the Fourier coefficients are given directly by:

m m
oo ] _Z P | .
A= ol s,,.Jss‘""Ys> i Zs_1Js'c°S(l)’s)+-~-

m
1 i (t
et o Jtsinliyg) + .o (A2.29)

where the J, J', J", etc are 'jumps' in the function, first derivative, second derivative,
ete. The definition of such a jump will be described in later appendices where the
technique is applied to various problems. The derivation of equation A2.29 is quite
simple [10] but is beyond the scope of the present book.

Method of Weighted Residuals

In effect, this technique [11] sets out to satisfy the boundary conditions of the
problem in the same way as does the classical method. Thus, a series consisting of
functions having adjustable multiplying constants is used. However, in this case, the
functions are rarely orthogonal and the constants can only be found by solving a set
of simultaneous algebraic equations. The number of terms in the series is chosen so as
to be equal to the number of adjustable constants. The method is approximate in
nature and the higher-order approximations can only be handled by using numerical
analysis techniques and a computer. Nevertheless, surprisingly accurate analytical
results can often be obtained using just a few terms, and sometimes only one [12].
Such an analytical solution haes the advantage that it will reveal the influence of the
various experimental and physical parameters directly whereas a more accurate but
numerical method will not. The method is extremely flexible and can be applied to
any problem. As an example, it will be used to find a solution to the dendritic growth
problem in two dimensions:

Simple Dendrite Analysis

A function will be chosen which satisfies the boundary conditions. This is known
as the external method. The trial solution can also be such that, alone, it does
not satisfy either the differential equation, or the boundary conditions. The
reader will doubtless appreciate the flexibility of the method, but on the other
hand he must also have a firm grasp of the physies of the real situation in order
to be able to use it properly.
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In the present case, a Dirichlet condition will be applied at ti. terface,
assuming that the concentration is constant over the parabolic surface of the
dendrite (figure 2.8). Thus:

c=c* z = -f3y?
Also, applying the far-field condition,
C= CO z =00

One can easily construct an expression which satisfies these conditions. Firstly,
take the basic solution for a planar interface which was derived above:

C = G, + (C* - Cglexpl-bz] (A2.30]

This deseribes a solute distribution in which the value at infinity is Cg. Thus,
the far-field condition is satisfied. It is also required that the concentration be
equal to C* when the value of the exponential term is unity. In the case of the
planar interface, this only occurs when z is equal to zero. Therefore, it is
necessary to replace z by an expression which is equal to zero whenever a
coordinate pair, (y,z), corresponds to the surface of the parabolic plate
dendrite. This is true when z = - 3y 2, so that the required expression is:

C = Cg *+ (C* - Colexpl-b(By?2 + 2)] (A2.31]
The reader should prove for himself that this satisfies the boundary conditions

and that the concentration decreases exponentially with y2 and z. The value
of b can be determined by means of the flux condition, applied at the tip:

Vi - e* = D98 )y e (A2.32)

Substituting the z—derivative of equation A2.31 into equation A2.32 gives:

b= ¥, (k-1cC*
D" C,-C*
so that:
_ . V(k = 1)C*(By2 + 2)
C = C, + (C* - Cylexpl- D(Cq - CF) ] [A2.33]

The differential equation (equation A2.6) is:

2¢ d2c v _9d¢C
%?2 * 922t D gz "0

Substituting equation A2.33 into A2.6 and simplifying gives:

vV ay? Uk - DHex V. (k-1Dc* _ V.
D " (Gg-c® "B 5 lco-om " b °
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The first term in the above equation (the 'residual' which gives the method its
name) will be made equal to zero at the point, y = 0 so that:

Y. 4o Der - L+ 2B (A2.34]
(o]

The curvature at the tip of the parabola, y=-By2, is given by the second
derivative of z with respect to y. Thus, the curvature is ZB and the radius of
curvature is:

R=-L [A2.35)

B

Substituting this value into equation A2.34 gives:

V. k=-DC* _v,1

D' C,-C¥ "D R
and:

(k-1C* _,, D

Co - C* VR

but VR/2D is the Péclet number, so that:

(k - 1)C* _
Co - C*

—

1
7P
Now, (C*-Cy)/(C*-kC*) is the dimensionless supersaturation, Q, so that:

= 2P ;
Q= 5557 [A2.36]

whieh is the same as the Zener/Hillert [9] solution (appendix 7).

Perturbation Method

If the geometry of the problem is such that the interface form corresponds closely to
some simple shape, any exact solution which is available for the simple shape can be
assumed to be similar to that for the slightly different morphology. This principle will
be illustrated by treating an almost planar solid/liquid interface growing under
steady-state conditions. A related problem will be studied in appendix 6.
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Slightly-Perturbed Interface

The form of the planar solid/liquid interface, deseribed by the equation, z = 0, is
assumed to be changed so that it is then represented by the expression:

z = €sinlwy] [A2.37]

where € is assumed to be a very small amplitude, and w is the wave number
(= 27/N) of the perturbation.

Recall that the exact solution for a plaenar solid/liquid interface under
steady-state conditions (equation A2.21) is:

C=Co*(Se - Colexpl- Yz

where C,/k is the concentration in the liquid at the interface and C, is the
original composition. Now, using the perturbation technique, a term having the
same form as the perturbation (equation A2.37) is added to the exact solution
for the unperturbed interface, i.e.:

C=Co+ (S0 - Golexpl- Y21 + A esinlwylexp(-bz] (A2.38]

where b has to be equal to (V/2D)+»\/(V/2D)2+w2 in order that the added
term should satisfy equation A2.6 (see equation A2.11), and A is a constant
whose value is to be determined by foreing equation A2.38 to satisfy the
boundary conditions. These are, for z = €sinlwyl):

C=cC* [A2.39]

V(1 - K)C* = -D—Q—C [A2.40]

0z

Note that equation A2.38 already satisfies the far-field condition, C=C,
when z =@, since the unknown constant, A, disappears. Rather more work is
required to make it satisfy the other boundary conditions (e.g. equation A2.39).
The first step is to substitute C* for C and €sin[wy] for z:

c* = Gy + (S0 - Colexpl- 31 + Asexpl-bS] (A2.41]

where, for clarity, S has been used to represent €sinlwy]. The above expression
can only be evaluated because of the assumption that € (andS) are small. In
this case, an exponential funection, exp(-x], can be approximated by 1 -x. Again,
because € is small, terms involving €2 (and S2) can be neglected. This
leads to:

c* = Co +(§0 - Co1 - ¥8) + AS(1 - bS)
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By dift tiating equation A2.21 with respect to z and then setting z equal to
zero, the concentration gradient, Gg, at the plane interface is found to be
(equation A2.22):

-_v.C
Ge =-p5 (% ~Co)
Subst ituting this into the previous equation and dropping terms in S? gives:
c*= Co +Ggs + AS (A2.42]
K c )

Thus far, no real progress has been made since the value of C* is also unknown.
It is necessary to find another equation which links C* and A, i.e. the flux
condition (equation A2.40). Thus, differentiating equation A2.38 gives:

dac __V Co. vz, -
dz - D( A Colexpl D] bASexp[-bz]

At the interface this becomes:

a

(§5),=5 = - 1 (S0 = Gl - 5 ) - bAS(1 - bS)
Substituting Ge for «V/DXCy/k - Co) gives:
dc i} VS,
(§5 )= = Gel1 - X2) - bas (A2.43)

Substituting equations A2.42 and A2.43 into equation A2.40 and cancelling S
throughout leads to:

- _kVGea_
Vp - Db

where p = 1-k. Thus, the original expression becomes:

C = Co+ (50 - Colexpl- 1 + (g EsilOV]jerpr-bs) (A2.44]

This expression describes the solute distribution ahead of the slightly perturbed
solid/liquid interface. Further use is made of it in appendix6, where the
stability of a planar solid/liquid interface is considered.
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(4]
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(6
(7
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(9
f10]
(11)
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APPENDIX 3

LOCAL EQUILIBRIUM AT THE
SOLID/LIQUID INTERFACE

The Phase Diagram

In most analyses of alloy solidification, and in all of the cases considered in this book,
it is assumed that the solid/liquid interface behaves locally as if it were in a state of
equilibrium. This means that the reaction rates in the small volume making up the
very thin but finite interface layer, are expected to be rapid in comparison with the
rate of interface advance. As a result, the transfer of atoms and changes in
arrangement, which are required in order to maintain constancy of the chemical
potentials in both phases, are rapid and cen therefore be neglected. Such a
simplification is permissible in the case of metals solidifying at the rates encountered
in normal casting and welding operations(§). The assumption of local equilibrium
means that, if the interface temperature is known, then one can obtain the liquid and
solid compositions at the interface by reference to the equilibrium phase diagram.
This does not mean that the system as a whole is at equilibrium, as gradients of
temperature and composition are present.

In order to avoid non-essential variables which would complicate the analysis without
revealing any new principles, it is usually assumed that both the liquidus and the
solidus lines of the relevant part of the phase diagram are straight. In solidification,
the liquidus line is most important and represents the point where the liquid 'first'
transforms to solid, i.e., the liquidus is the freezing point of an alloy. Thus, only the
slope, m, of the liquidus is used in calculations. The liquidus slope is defined as:

T,[C) = Tf + mC (A3.1]

The solidus composition can be determined at any time from the definition of the
distribution coefficient:

k = (Cs r,p (A3.2]
C

The constants, m and Kk, are always defined in the present book in such a way that the
product, m(k-1) is positive. In general, m can be positive or negative and k can be
greater or less than unity respectively.

§ At very high growth rates (V=100mm/s), such as those which
occur in rapid solidification processing, conditions of local
equilibrium no longer exist. Therefore, the value of k
changes[1].
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Figure A3.1

Two important properties characterise the range of coexistence of solid and liquid for
a given alloy:

AT, = -mAC, [A3.3]
AC, = Q,o(_lg'_& [A3.4]

All of these properties depend upon the Gibbs free energy (free enthalpy) of the alloy
system as shown by figure A3.1. The latter relates a free-enthalpy/concentration
diagram and a free-enthalpy/temperature diagram to a temperature/concentration
(phase) diagram. The form of the curves in the AG-Cdiagram can be described using
the regular solution model[2 - 4] which shows that:

Gy = AG™ + Qx(1-X) + RT(XIn(X) + (1-X)In(1-X)] [A3.5]

The curves in the AG-T diagram depend upon the standard values for the pure
components:

G = H -TS )
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where the dots indicate values for the pure component. For convenience, Gp; and
G gre written as differences. Then,

AG = AH - TAS [A3.6]

which is the free enthalpy (Gibbs free energy) difference existing between the pure
liquid and pure solid:
T
AH® = AHg¢ - [ AcdT
T

T,
AS = ASf —f(ﬁ )dr
T T

where Ac-=cl -cS. For clarity, the dot suffix will be dropped in the remainder
of this appendix.

The quantity, AG, in equation A3.6 is very important with regard to nucleation and
growth processes and can be evaluated when the temperature dependence of Ac is
known. At high temperatures, the difference in specific heat of the liquid and solid
can be described by:

Ac= KT + Ko [A3.7]

For an undercooled melt, AT=T¢-T and (5]):

= AHp AT | 42 (K) _Ko_
AG T AT [2 + Tf+T] [A3.8]

If the value of Ac is unknown, the simplest assumption (and one which is quite
reasonable for metals) is that Ac = 0. This leads to:

AHp AT .,
AG = ——Tf?—= ASp AT (A3.9]

The quantity, ASg, is the difference in slope of the G-T function of two phases
(figure A3.1). In the case of solidification, ASy is less than zero.

From equations A3.5 and A3.9, one can now see what parameters influence the
magnitude of m and k. These are the interaction parameter, §J, for the atoms of both
species in the alloy, which determines the form of the Gp,-Xcurves, and the
melting entropy, ASg, which is the basis of the AG-Xcurves. A description of
further relationships between k, m, and thermodynamic properties is given by
Flemings [6].

Capillarity Effects [7,8]

The total Gibbs free energy of a small solid particle in & melt is inversely
proportional to its size. As the free enthalpy of the solid increases with decreasing
diameter, while the free enthalpy of the liquid remains constant (if the amount of
liquid is much greater than the amount of solid), the melting point decreases for the
pure solid as well as for the alloy (figure A3.2). The increase in the free enthalpy of
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the particle due to its curved surface (of redius, r) can be regarded as being an
internal pressure increase:

AGp = vy, AP (A3.10)

where v, is the molar volume (assumed to be constant), and AP is given by the
specific interface energy and the curvature:

AP = 0K [A3.11]

Equating equations A3.9, A3.10, and A3.11 leads to a relationship between the
equilibrium temperature drop and the curvature:

T;- T = arp = K (A3.12)
and
=0Vm - O
r &S] a5t (A3.13}

where ASg is the molar freezing entropy and Asg is the volume freezing entropy.
In order to use these equations, the parameters ¢ and K have to be defined:
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Specific Interface Energy, g: It is assumed that the solid/liquid interface (in fact a
volume) is a surface across which the properties change discontinuously. The specific
surface energy is defined there as being the reversible work, dw, which is required in
order to create new surface area, dA. In the case of & solid/liquid interface, the
specific interface energy can be set equal to the interfacial tension, 7. According to
figure A3.3, the work necessary to extend the surface by dz is:

dw =fdz = gldz = 0 dA

from which one can obtain the definition:

d
o=(ga )1V, (A3.14]

Figure A3.3

Curvature, K: In two dimensions, the curvature of a function is defined as the change
in the slope, 00, of that function over a length of are, 81 (figure A3.4a):

_ 60
K= =1

and, since S1=r 50,

K=

"3

It can be shown that, in general, the curvature at a point (61—~ 0) can be obtained in
Cartesian coordinates as:

K= [l—f"?f]g/z [A3.15]

where z' and z" are the first and second derivatives, respectively, of the function,
z(y).
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Figure A3.4

The average curvature of a general line depends only upon the gradients of the curves

at its end-points, and upon the distance between them (figure A3.5). In the case of
surfaces in three dimensions, the curvature can be defined as the variation in surface
area divided by the corresponding variation in volume:

K =944 (A3.16]
dv

For a general surface with constant principal radii (minimum and maximum at 90° to
each other - figure A3.4b) one can define (for small angles):

I = r10
lg =rof
Increasing the radii by dr gives:
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B
A
Figure A3.5
dA =1)dlg + lgdl} =r} 8 dr@ +rqy0arf
dA =(r] + ro)dr 62 (A3.17)
dv =1}lgdr = (r) 0 Xrg @)dr
dv =r)rgdr§2 (A3.18)
Therefore from equations A3.16, A3.17, and A3.18,
= .l— + l
K=( 5 r2) (A3.19)

In the case of a sphere, rj =rg=r so that K=2/r. In the case of a cylinder, r)
is infinite and rg =r so that K= [/r.

Thus, using equation A3.12, the decrease in melting point due to the curvature of a
spherical crystal in a melt can be written:

ATy = % [A3.20)

1t is supposed in the above calculations that the value of O is isotropic. The effect of
anisotropy of the latter is treated by Aaronson[9].

Mechanical Equilibrium at the Three-Phase Junction

A junction between two solid phases at the solid/liquid interface will form a groove.
At this point, the surface forces will tend to set up an equilibrium (minimuimn energy)
morphology in which:

Xr=0
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From figure A3.86, it is evident that this condition will be satisfied when:
GaB = Ogy cosl 0,1+ "BL cosl 05)
and [A3.21]
Oy sinl 011 = 0gu sinl 04
In establishing mechanical equilibrium, it is important to consider the equilibrium of
the moments acting on the junction (second equation above) since this affects the

angle of eutectic or grain boundaries with respect to the solid/liquid interface. In
most cases, it is expected to be close to 90°.

Figure A3.6

Calculation of f[f] for Heterogeneous Nucleation [4]

Application of equations A3.2]1 to heterogeneous nucleation shows that real
mechanical equilibrium (figure A3.7b) cannot be established and that a surface stress
will be built up -(figure A3.7a). Due to the presence of foreign crystalline surfaces
(crucible, surface oxide, inclusions) in a melt, nucleation may become much easier.
The effect of these interfaces can be deduced from the energy balance:

AGj = interface energy creation due to nucleation - interface energy
gained due to the substrate

AGj = (A)eOje * Ags Ues) ~ Acs Tls
AGj = Aje Fle + TR0 - O)g) [A3.22)
Www.lrangrr}avad.com
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O)s = Ogg * Ojecosl 0}
AGj = Aje O1c - TR2cos[ §10)c [A3.23)

AG = AG, * AGj = veAg + (Aje - TR2cos[01)0)e (A3.24])

Te3(2 - 3cos[ 8] + cosd O
Ve 3

Aje = 2Tr2(1 ~ cos[ @)
R =rsin( 8]
sin2( 61 =1 -cos2(0]

3 - 3
ac = (L8 4 4202 3c°swl+ cos 6],
AGhet = AGhom (6] (A3.25)

where:

1 @) = 2= 3cos(8) + cos3(0) _ [2 + cos(O) 11 - cos( )12
4 4

crystal
nucleus

7 \
liquid nucleating 2R
particle,
substrate L
Figure A3.7
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APPENDIX 4

NUCLEATION KINETICS IN A PURE SUBSTANCE

In order to determine the nucleation rate, it is necessary to determine the number of
critical nuclei and the rate of arrival of atoms necessary to make up these nuclei
[1-3}.

Equilibrium Distribution of Nuclei in an Undercooled Melt

The system shown in figure A4.]1 represents a mixture of N, atoms in the liquid state
and N, small crystal clusters each of which contains natoms. The free enthalpy
change of such a system compared to another one, at the same temperature, which
contains only atoms and no erystal nuclei, is:

AG = N, AG, - TAS,, (A4.1]

Here AG, is the free enthalpy change due to the formation of one nucleus
containing natoms and AS, is the entropy of mixing of N clusters with
N, atoms. (When the existence of an ideal mixture of erystal clusters and atoms of
liquid is assumed, the mixing enthalpy, AHy, is equal to zero.

In the case of sub-critical clusters (known as embryoes), AG,, is positive due to the
work of interface creation. This is demonstrated in figure A4.2 and corresponds to
figure 2.2 where n and r, characterising the difference in size, are related by
equation 2.2. The value of AGp can be determined in an analogous manner using
equation 2.3 and leads to the relations hip:

AGp =nAG'+ A0
[A4.2)
Ap = »y’n2/3

"] crysial
cluster

aloms of
liquid

Figure A4.1
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Figure A4.2

where AG' is the atomic free energy difference, A, is the interface area o{ &he
cluster, 7 is a form factor which depends upon the shape of the cluster, and n /3
proportional to the cluster diameter.

The mixing entropy of equation A4.1 can be derived using the well-known relationship:

+N)!]

= (N
ASp = kg I T

[A4.3)

and therefore

AG = N, AG, - kgTIn[(N, + N )1} + kKgTIn(Np!) + kgTIn(N,!) [A4.4)
where AG is always positive for critical nuclei. An increase in Nj will first
decrease the total free energy of the system, due to the mixing of clusters and atoms
(figure A4.3) and then reach a minimum value which represents the equilibrium
concentration of clusters for a given undercooling. Applying Stirling's approximation
for large values of N, i.e. In(N!)=NIn(N)- N, differentiating equation A4.4 with
respect to Np,, and setting the result equal to zero gives:

AG,, - kgTln{N; + Ny} -In(Np)} =0
from which:

_Nn__ = __égn A4.5
N, + Ny, expl kBT] [A4.5)

Since N; > N )
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Np
ﬁt = expl ]

The number of nuelei (critical elusters) in equilibrium is therefore:

N§ =N, exp[- Gﬂ } [A4.5}

where AGn is the energy barrier for nucleation as defined in figure A4.2. These
relationships are given in figure 2.3 of the main text.

Rate of Formation of Stable Nuclei

The nucleation rate must be proportional to the number of crystals of critical size,
N, . However, in order that these crystals should grow the addition of further
atoms is required. The system, containing clusters of size, n°, is in an unstable state
and can produce smaller or larger clusters (figure A4.2) in order to decrease its
energy. Therefore, it is necessary to determine the rate of incorporation, dn/dt, of
new atoms into the nuelei. The nucleation rate is then:

1= dn

Nf at [A4.7)
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where the adsorption rate, dn/dt, is the product of an adsorption frequency, », and
the density of sites at which the atoms can be adsorbed by the critical nueleus, ng®:

dn _ ppo (A4.8)
The adsorption frequency is:
= - AGq
v Vo expl kgT p

where V,is the atomie vibration frequency, exp(-AGg/kgT] is the fraction of
atoms in the ligquid which are sufficiently activated to surmount the interface

addition activation energy, AGg, and p is the adsorption probability.
The site density, ng :

g = & ne [A4.9)

where A"n is the surface area of the critical nucleus and nq is the capture site
density per unit area.
The nucleation rate is therefore:

1 = Iyexpl- —@C%T—Agd ] [A4.10)
and
lo = Ny ¥opAy, ne
Since the exponential term is extremely sensitive to small variations in the argument

(figure 2.5), the exact value of l, is relatively unimportant and for metals is often
approximated by:

Iy = NL(EEI) = Ng- ¥ = 1042m~3571 (Ad.11)

All of these relations assume the existence of a steady state and are not of general
applicability. Nevertheless, they give a good guide to the principles which are
involved. For a more complete treatment of nucleation theory, the reader should
consult reference 3.
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APPENDIX 5§

ATOMIC STRUCTURE OF THE
SOLID/LIQUID INTERFACE

In order to explain the principles involved, the simple case of a two-dimensional
crystal consisting of 'square atoms' of only one type which interact only with their
nearest neighbours and form single layer interfaces will be treated here. It is assumed
that there are three different structural elements making up the surface structure
(three-site model - figure A5.1). This situation has been treated in detail by
Jackson [1]. The model is an improved version of a previous one which was developed
by the same author (2]

Qy Qq Qs

Aclivalion energy
ns 1 - — 4 for departure for
an alom of sile

Figure AS5.1

There is a continuous interchange of sites due to the thermaliy activated adsorption
or desorption of atoms. For example, a site n=1 will be transformed into an n =2 site
by adsorption of one neighbouring atom. It is assumed that, after a short time, the
interface structure reaches a steady state, i.e., the overall density of the three types
of site does not change with time. The rate of adsorption of atoms is independent of
the rate of departure. Both are activated processes which are similar to dif fusion in
the liquid, but the desorption of atoms is more difficult from an undercooled crystal,
due to the gain in energy which occurs when an atom is added at the solid/liquid
interface. The probability of adsorption will depend upon the roughness of the
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interface; the greater the density of steps (and therefore the greater the number of
exposed atomic bonds presented to the liquid), the higher is the probability that an
atom will be incorporated into the ecrystal, as a result of the stronger bonding
involved.

The rate of atom arrival, J*, is governed by:

7+ = 3hexpl- 3] [A5.1]

where Q is the activation energy for difiusion in the liquid. The flux of atoms leaving
is determined by:

= 1= _ _2nAHyp
Joexpl éT—lexp[ “RT } [A5.2}

where AHyg is the latent heat of fusion, n is the number of bonds which have to be
broken by an atom in leaving the crystal, and z is the coordination number (4 in the
case of a two-dimensional crystal). An atom which makes two bonds with the erystal
(i.e. half of the maximum possible number of bonds) can be viewed as being half in
the solid and half in the liquid. At the melting point, Tg, the rates of arrival and
departure from such sites (n = 2) should be equal. Thus,

Joexp[-—ghl] Joexpl- —O,-l;]exp[- ] [A5.3)
therefore:

Jg -

3% = expl-R2 ] (A5.4]

[o]

Combining equations A5.2 and A5.4 and rearranging the exponential terms:

( AHf Hey [A5.5])

- =Jr & -
J™ = Idexpl- ]exp RT( SR

The second exponential term can be regarded as being a measure of the probability
that an atom which has n neighbours will leave the site, that is:

AH[

nAHf]

Py = exPlpe IRT

The net flux is determined by the difference between equations A5.1 and A5.5:

J = bexpl-12-101 - py) (A5.6]

It is now possible to set up balance equations for the arrival and departure of atoms
at various types of site. The detailed calculations have been given by Jackson [1}.
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Figure AS5.2

Carrying these through and realising that, if (AH{/RT} AT/T)<1,

_AHfAT . AH{AT
exp-—Rrer } =1~ “RT{T

the net growth rate, V, of the crystal becomes:

V = 3v' = vexpl- )05 Mink) (A5.7)

where @ = AH{/RTy = ASy/R; the dimensionless melting entropy and v' is the
atomie volume.

Therefore, to a first approximation the growth rate is a linear function of the
undercooling. 1t also depends upon the magnitude of the crystallographie factor, f(hk],
which is a function of interface structure. It thus depends upon the value of <& and
upon the Miller indices, (hk), of the crystallographic plane. When « takes on high
values (e.g. 10), the fraction of extra atoms or holes in the interface is proportional
to exp{-&¢}.

For (11)-faces of the present square crystal (figure A5.2), f is independent of & but
this is not so for the (10)-face (table A5.1). The reason for this is that a 45° edge

Table A5.1: CRYSTALLOGRAPHIC FACTOR,
f(hk]}, OF TWO FACES OF A SQUARE CRYSTAL

« fr1o} f11

1 0.56 0.60
5 0.30 0.60
10 0.039 0.60
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exhibits many growth steps which cannot be removed by atom addition. When the
value of «x is large, the (11)-edges will grow much more quickly and leave the crystal
bounded by slow—growing (10)-edges (figure A5.3 - see also figure 2.9). Note also in
table AS.1 that for small values of &, the growth is almost isotropic (f(10}~f[11]).
This behaviour is typical of metals.

Figure A5.3
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APPENDIX 6

THE MULLINS-SEKERKA INTERFACE
STABILITY ANALYSIS

The constitutional undercooling criterion provides a useful means of estimating
whether a solid/liquid interface will be planar under directional solidification
conditions. However, from a theoretical point of view it has several faults. Firstly, it
does not take account of the effect of surface tension. It is expected that this will
tend to inhibit the formation of perturbations. Secondly, the constitutional
undercooling theory does not give any indication of the scale of the perturbations
which will develop if an interface becomes unstable. In order to gather more
information about the morphological instability of a plane interface than that
provided by the constitutional undercooling theory, one must suppose that the
interface has already been slightly disturbed and then ask whether the disturbance
will grow or disappear (chapter 3). To this end, it is sufficient to consider a sinusoidal
interface form having a very small, time-dependent amplitude (figure A6.1).
(Provided that the amplitude is small, a sinusoidal form represents the most general
disturbance possible; it can be supposed to be one term of the Fourier series
describing any disturbance.)

The present appendix is a simplified version of the classic paper by Mullins and
Sekerka [1] which first treated the problem in this way.

The object of the calculation is to determine the conditions required for the growth
or decay of a perturbation at the solid/liguid interface (figure 3.1) under the type of
thermal conditions imposed by directional solidification. The first step is to solve the
diffusion equation for the perturbed interface. In fact, a suitable solution
(equation A2,43) was derived earlier:

C=Cqy+ (%0 - Colexpl- %] + ASexpl-bz] [A6.1]

where A = kVGo/(Vp-Db), S = esinlwyl, b = (V/2D) + [(V/2D)2 + w?2)0.5, and

Z = ESin wy

Figure A6.]
www.iran-mavad.com
192

Age medize 9 Olgedil @2 ye



In general, neglecting atomic kinetics and conveetion (for a more complete treatment
see reference[2}), it would be necessary to solve four coupled differential equations
simultaneously, i.e. for heat and solute diffusion in each phase (solid and liguid). On
the other hand, as explained in appendix 2, the effect of solid-state diffusion can be
neglected. In order to simplify the calculations even further, the thermal field will be
assumed to be linear, to have the gradient, G (figure A6.2), and to be unaffected by
the shape of the interface. Assuming steady-state conditions to be applicable, the
only equation which remains to be solved is therefore the one which describes the
solute field in the liquid phase ahead of the solid/liquid interface.

Equation A6.1 has been shown (appendix 2) to satisfy the far-field condition, and the
flux condition. It remains to make the equation satisfy the coupling condition at the
interface.

Figure A6.2

Coupling Condition

Because the interface is assumed to be situated in a linear temperature field
resulting from the imposed heat flux occurring from the liquid to the solid, the
temperature varies over the non-planar interface. In order to maintain local
equilibrium conditions, the constitutional undercooling and curvature variations at
the interface must be such that their sum results in a local melting point which is the
same as the temperature imposed by the growth conditions (equation3.17). The
temperature and concentration fields are thus coupled via the following relationship:

T* = Tq* [A86.2]
Www.ira nArY;avad.Com
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The thermodynamic equilibrium temperature of the interface is affected by the local
concentration and the local curvature, according to:

T* = Tf + mC} - w2sT’ [A6.3]
The final term arises from the mathematical definition of curvature (equation A3.15)
which is approximately equal to z" for small values of z' (figure A6.1). Considering
now the interface temperature distribution arising from the temperature gradient
imposed by the heat flow:

Tq* = To *+ Gz [A6.4]

where Ty, (=Tf + mCg/k) is the liquidus temperature of the plane interface
under steady-state conditions, and z=S. The interface temperature, as a function of
y therefore becomes:

Tg* =Tp + m—kco +GS [A6.5]

In order to satisfy the coupling condition, equations A6.3 and A6.5 must be set equal
to each other, giving:

mC¥ - w?sT" = "-‘Eo +GS
Substituting for C} (= C*) from equation A2.41 gives:
m( Qko + GgS + AS) - w2sT = "~‘k—co +GS

that is:
mGe -G +mA - w2['=0

Substituting for A gives:

- mkVGe _ 2T =
mGe G+Vp—Db w'=0

Rearrangement of this expression leads very simply to:
~w2I'(b - !DE)- G - !DE) + mGe(b- L) =0 [A6.6]

This expression determines the form (values of w) which the perturbed interface must
assume in order to satisfy all of the conditions of the problem, and is the same
(allowing for the different symbols used and the simpler temperature distribution
assumed here) as the expression in curly brackets which appears in equation 20 of the
paper by Mullins and Sekerka[l]. However, in the present simplified treatment, the
tine dependence of the amplitude has been lost; the time derivative of € being zero
in equation A6.6. Compare this with equation 3.23, where p=1. From equation 3.23, it
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is known that the parameter, F = (€/€ )mG¢/V), should appear on the RHS of
equation A6.6. Replacing this term permits the solid/liquid interface stability analysis
to be pursued further. If the reader finds this step to be too arbitrary, he should
recall that replacing the zero by such a parameter is a standard method of exploring
the behaviour of the roots of an algebraic equation. Equation A6.6 will therefore be
written as:

-2l - !§) - G(b- !DE) +mGeolb-¥)=F [A6.7]

y
D

if the parameter, F, is positive for any value of w, the distortion of the interface will
increase whereas, if it is negative for all values of w, the perturbation will disappear
and the interface will be stable.

Stability Criterion

The form of F, as a function of w (the purpose of the other abscissae will be
explained later), is shown in figure A6.3 for the stable and unstable situations
(compare with figure 3.7). There is a difference between figures 3.7 and A6.3 in that
the latter demonstrates the behaviour of the exact solution (equation 20 of Mullins
and Sekerka, 1964) where the unstable range is not limited by A; and _@, but
rather by Aj and Aq. That is, there is also an upper limit, Mg, to the A-values
of the i)l‘lstabilities. Note that w in figure A6.3 is related to A in figure 3.7 by
w=27/\.
From the signs of the terms in equation A6.7, one can immediately deduce the effects
of the parameters involved. For example, w?I" (curvature effect) and G (imposed
temperature gradient) tend to decrease the value of F and thus increase the stability,
whereas mG, (liquidus temperature gradient) is always positive (since m and G,
always have the same sign) and therefore decreases stability.
As it stands, equation A6.7 is of little use to the practising metallurgist since
numerical analysis techniques would have to be used in order to calculate the
stability limits. 1t is desirable to derive a readily computed stability criterion,
analogous to the simple constitutional undercooling criterion (chapter 3). At first
sight, this appears to be easy since equationA6.7 is 'only' of the third degree.
However, the fact that b is a function of w complicates the situation. To convince
himself of this, the reader is invited to try to write equation A6.7 in terms of w and
at the same time eliminate b, before reading on.
The elimination of b leads to a formidable equation of high order which, even if could
be solved algebraically, would be unlikely to yield a simple criterion. The derivation
of equatlon A6.7 is thus only the first step in analysing interface stabilty, and the
more difficult step is to deduce a clear stability criterion. That is the main object of
this appendix.
Sekerka[3] devoted a paper to the problem and obtained tabular and graphical
criteria for the determination of stability in a given system. His results will be
discussed later. The alternative technique presented here is felt to be rather more
transparent than Sekerka's method.
From figure A6.3, it is evident that, in order to derive a stability criterion, one only
needs to know whether equation A6.7 has roots for positive values of w. If it has no
roots, then the interface is stable because the curve never rises above the positive
w-axis and F is therefore negative for all wavelengths.
Now, any good elementary textbook on the theory of equations will describe a
number of theorems, such as De Gua's, Descartes', Budan's, and Sturm's, concerning
the number of positive roots possessed by an algebraic equation. The latter theorems
are listed in the order of increasing precision and increasing complexity. The simplest
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Figure A6.3

one which is applicable to the present case is Descartes' theorem. This states that, "in
any algebraic equation, the number of positive roots cannot exceed the number of
changes of sign of the coefficients".

In order to test for the situation where there are no positive roots, it is more
convenient to express equation A6.7 entirely in terms of b than it is to try to obtain a
solution in terms of w (for the reason mentioned before). Unfortunately, the
definition of b means that a w-value of zero corresponds to a b-value of V/D
(figure A6.3). Thus equation A6.8:

_PDS + ,v,lj:[‘_(l + p)b2 + (9%12!2+ ch -G)b + ("_."—%C! - g_VI-)E )=F [A6.8]

which is obtained by replacing the w2 term in equation A6.7 by the definition of b,
should be tested for roots between V/D and infinity. This is not possible using
Descartes' theorem and a transformation must be introduced so that the independent
varigble egain ranges from zero to infinity. This can be done by replacing b by
W+ V/D to give:

Twd -1 v igw? + (mGe - 6 - KLVhw - (KOY) - [46.9]

where W=b-V/D is a arbitrary variable which is introduced in order to change the
origin of the horizontal axis. By now, the reader is probably uneasy about the various
modifications which the original equation has suffered and is wondering how the
values of the roots of the original equation will be determined. The answer is that
they do not have to be. Recall that only the existence of roots is of interest and that
their location (provided that they are between zero and infinity) is irrelevant. This is
made clear by the parallel scales used in figure A6.3 since the values of the roots
dif fer depending upon the scale used but their existence or non-existence does not.

To continue with the derivation of a stability criterion, the manner in which the signs
of the coefficients change as the parameters are varied will be studied. From
tables A6.1 and A6.2, it can be seen that stability occurs when:

2
Eg‘z’ +G-mGe >0
www.iran-mavad.com
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Hence, the criterion for stability becomes:

G > mG, - Dl%’-z

Table A6.1: SIGNS OF THE COEFFICIENTS OF THE STABILITY EQUATION (A6.9)

Term w3 w2 wl wo

Sign - - +or - (*%) -

* negative if mGo - G-kV2I'/D2 <0

Table A6.2: USE OF DESCARTES' THEOREM TO DETERMINE INTERFACE STABILITY

w3 w2 wl W0 Changes insign Maximum Number of Roots Stable

- - - - 0 0 yes
- - + - 2 2 no

Recalling that Ge=-V/D)AC, (chapter3) for plane—front growth, the stability
criterion becomes:

2
G>y__A_Dzo - FDKTV [A6.10]

where AT,=-mAC,. The simple constitutional undercooling ecriterion for
stability (chapter 3) can be written:

G >mG, [A6.11]

Thus, an interesting result of the more exact analysis described here (equation 6.10) is
to reveal conditions under which stability is obtained even when equation A6.11
predicts instability. This is so because the additional curvature term on the
right-hand side of equation A6.10 decreases the value of the liquidus temperature
gradient which must be exceeded by the imposed temperature gradient, G, in order to
ensure stability.

A more striking fact is that high growth rates will lead to stability, regardless of the
value of G, because the I['kV2/D2Z term, which is subtracted from the right hand
side of equation A6.10, increases more rapidly than G, (which depends only linearly
upon V/D). This stability at high growth rates was termed, 'absolute stability’, by
Mullins and Sekerka.

Thus, the use of Descartes' theorem has led, in a rather simple way, to the derivation
of a useful stability criterion which reflects the conclusions of previous analyses.
However, it must be pointed out that the use of the theorem should only lead to a
conservative criterion. This is because the theorem can state deflnitely whether
there are no roots (no change in sign) but does not give an unambiguous answer when
there is a change in sign. Instead, it merely gives an upper limit to the number of
roots. Pedantically speaking then, the equation could stlll have no roots and the
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system could stili be stable. On the other hand, the values of F in table A6.3, when
caleulated for various values of G, do show that in this specific but typical case the
criterion is obeyed. Thus, the positive values of F (underlined) gradually decrease in
number as G is increased and finally disappear upon exceeding the critical value for
the given system and growth rate.

At the beginning of the present calculations, the temperature field was assumed not
to be affected by the presence of the perturbed interface, i.e. the effect of the
latent heat of solidification and of the differing thermal conductivities in the solid
and liquid were neglected. Mullins and Sekerka allowed for such effects and found
that their inclusion simply changed the imposed temperature gradient, G, to an
effective value given by:

Abf )y

G'= 201G - (20t

where G is the temperature gradient in the liquid at the interface.

« second term leads to an increase in stability while the first term generally
decreases the stability.
For stability, Sekerka [3] predicts:

(K2f¢_ (= ) A"f ¢ 91> sa%k) [A6.12)

where S(A*,k) is a function of k and of a dimensionless parameter, A*, which takes
into account the interface energy:

ax = KLV [A6.13]

Figure A6.4 illustrates the relationship between S(A*k) and (kI'V)/AT,D. There
exist two regimes where the solid/liquid interface will be stable.

Table A6.3: VALUES OF THE STABILITY
PARAMETER, F, FOR A TYPICAL SYSTEM (A1-2%Cu)*

w(/m) 100 1000 30000 100000 1000000

G(K/mm)
8.0 -10.6 229 2620 17625 -8.7 x 108
9.0 -25.3 125 1616 7620 -8.8 x 106
10.0 -40 20 611 -2385  -8.9 x 1068
10.1 -41.5 9.5 510 -3384 -8.9x 106
10.2 -42.9 -0.94 310 -4385 -8.9 x 108
10.3 -44.4  -11.4 310 -5385 -8.9 x 106
10.4 -45.9  -21.8 209 -6386  -8.9 x 106
10.5 -47.3  -32.3 109 -7386 -8.9 x 106
10.6 -48.8  -42.8 8.2 -8387  -8.9 x 108
10.7 -50.2  -53.3 -92.3 -9387 -9.0 x 106

* data from appendix 12 and an assumed growth rate of
10°6m/s. The critical value of mGe - 2T'/D2  for
these conditions is 10.67
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Figure A6.4

Lower Limit of Stability

At small growth rates, such as those encountered under conditions of zero
constitutional undercooling, A* will become much smaller than unity.

It is possible to estimate the value of A* by substituting the growth rate of
constitutional undercooling, Vo= GD/ AT, (equation 3.15), into equation A6.13:

» ~ kI'G
A"ATZ

Using typical values for alloys undergoing directional solidification: k=<1,
I'=104Kmm, G=10K/mm, and AT,=10K, the stability parameter becomes
A*=<10"° indicating (figure A6.4) that S=~1 when V is small as in this situation.
Since G/V is quite large compared to |Ahg/2K|, equation A6.12 simplifies to

2K DG
) Gy > [A6.14)

for the case of stability. This criterion is very similar to the ecriterion of
constitutional undercooling and becomes the same for equal thermal conductivities.
As most metals have lower conductivities in the liquid state than in the solid state, at
the melting point, the stability criterion will be shifted to values which are slightly

greater than unity. For instance, for the common case where K, = Ks/2s
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DG
AT,V > 1.5 [A6.15]

Compaere this equation with equation 3.15. Following Sekerka [3], equation A6.12 can
also be written as:

G*
_"—‘ﬁc > 5 [A6.16]

where G* = (KgGg + K(G)/(Kg + K;). As for the limit of constitutional
undercooling, 5 =1 and mG, = AT,V/D, one finds for morphological stability:

*
"'—‘Al?r(jv >1 [A6.17)

Upper Limit of Stability

This 1imit, which is called 'absolute stability' arises when A#* is greater than unity and
the parameter, S(A*k), becomes equal to zero. In this case, according to
equation A6.i2, any positive value of the LHS will lead to stable interfaces. Thus, it is
possible to estimate the growth rates in this regime by setting A* greater than unity

to give:

Vaps > 2ToD [A6.18]
kI

Using typical values for metals: AT,=10K, D=5x103mm2/s, k=0.5, and
I'=10"4Kmm, the limit of absolute stability should be attained when V is greater
than 1m/s. Such rates are very high but can be obtained by rapid solidification
processes such as laser surface melting. At these rates, account must be taken of the
value of the distribution coefficient, which is a function of the growth rate and may
approach unity [4].
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APPENDIX 7

DIFFUSION AT A DENDRITE TIP

There are three different types of dendrite:

i equiaxed dendrites of pure substances - freely growing and limited by
thermal dif fusion (figure 4.7b)

ii  equiaxed dendrites of alloys - freely growing and limited by solute and
thermal diffusion (figure 4.7d)

iii columnar alloy dendrites - constrained in their growth by a positive
temperature gradient and controlled by solute diffusion (figure 4.7¢)

The first two types of growth form are similar and both lead to the creation of an
equiaxed polycrystal in which each grain is made up of six orthogonal primary trunks
(in the case of a cubic crystal), arranged in a random manner. The space remaining
between the trunks is filled with secondary and possibly higher-order branches
(figure 4.16). These crystals grow in an undercooled melt, and this makes them
inherently unstable, Therefore, no steady-state cellular morphologies can be observed
and the spacing, )\1, between the trunks corresponds approximately to the grain
diameter. The growth of equiaxed dendrites of pure metals occurs under conditions
where only heat flows from the interface to the surrounding liquid. That is, the
temperature gradient is negative at the interface (left-hand side of figure A7.1) and a
thermal undercooling, ATy, exists. In the case of equiexed alloy growth, there
exists not only a negative temperature gradient but also a solute build-up (if k is less
than unity) ahead of the dendrite tip. This changes the local liguidus temperature
(right-hand side of figure A7.1). When an equiaxed grain of an alloy of composition;,
Coy is growing it experiences an undercooling, AT, which is the sum of a solute
undercooling, ATq, a thermal undercooling, ATy, and a curvature undercooling,
AT;. The temperature and solute fields of columnar dendrites growing in alloys
have been described in figure 4.8.

In general, it can be said that, due to the large tip radius of the dendrites predicted
by the stability criterion (appendix 8), the curvature undercooling is small compared
to the other contributions and can be neglected. At the tip one can therefore write,
C¥(r)=C{. One can now evaluate the solutal and thermal undercoolings, AT, and
ATy From the definition of the solutal supersaturation (figure A7.2):

-Cx*-C
= ¥i——>o0 AT.]
Q o [A7.1]
* = __.(;Q__
C = =8
ATa = m(Cq - C¥) = mCll - TT’T)F] [A7.2]

where p=1-k. At low supersaturations, where €} is much smaller than unity

AT = -mCo{lp
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Figure A7.1:

Substituting, -mCgyp = ATyK, one obtains

AT = ATk Q<1 (A7.3}

Therefore, the solutal supersaturation, !, can be defined as the ratio of two
temperature differences

= BATe [A7.4}
ATk
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Similarly, the thermal supersaturation, Qt, can be defined as the ratio of the
thermal undercooling to the unit undercooling (-Ah¢/c)

= BTy
02 -Ahg/e (A7.5]

from which is obtained an equation which is analogous to equation A7.3

ATy = (), ZAhf (A7.6}
c

Hemispherical Needle Approximation

A cylinder with a hemispherical tip, growing along its axis, is the simplest
approximation which can be made to the problem of dendrite tip growth[l}
Nevertheless, it permits a rapid comprehension of the important factors involved in
dendrite growth to be obtained. The cross—section of the cylinder, A = TR2,
determines the volume which grows in the time, dt, and which is responsible for the
rejection of solute (figure A7.3a). The surface area of the hemispherical cap,
Ah=27l'R2, determines the amount of radial solute diffusion. Thus, a flux due to
solute rejection, J), and one due to diffusion in the liquid ahead of the tip, Jg,
can be identified:

J| = AV(C} - Cg%) (A7.7}
Jg = -DAR( %),:R _ [A7.8}
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Figure A7.3:

Under steady-state conditions, both of the fluxes must be equal, leading to the
relationship:

VOH1 -1 = -2D(§E IR (A7.9}

The concentration gradient at the tip can be approximated by the value which is
found for a growing sphere (equation A2.24);

dcC == QL."_CO
(dr 'R R

Therefore, the dif fusion equation reduces to:

VR _ C,*-C

yrR - v AT7.

3D G —k% [A7.10}
which is generally written in the abbreviated form:

P.= (A7.11}

Here, Po (=RV/2D) is the solute Péclet number (the ratio of a characteristic
dimension, R, of the system to the solute boundary layer thickness at a planar
interface). In figure 4.9, this expression is represented by the straight line which runs
from the upper left to the lower right.

In the case of thermal diffusion-limited dendrites, a similar flux balance to that
above can be made and leads to the same relationship as that of equation A7.11,
where the solute Peclet number is replaced by a thermal Peclet number:

RV

Py= o= (A7.12}

and the solute supersaturation is replaced by the thermal supersaturation, as defined
by equation A7.5. Therefore, the thermal case is defined by
Py =y (A7.13}
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Paraboloid of Revolution

As proposed originally by Papapetrou(2}, a much better approximate form for the
dendrite tip is a paraboloid of revolution (figure A7.3b). Ivantsov [3] was the first to
develop a mathematical analysis based on that shape, although it has since been
generalised by Horvay and Cahn[4}. They found that, for a needle crystal
corresponding to a paraboloid of revolution:

1p) = ) (A7.14)
where the Ivantsov function (a funetion of P) is given by:

I(P) = Pexpl[P]E [P} [A7.15}

and E| is the exponential integral function, defined by:
a
E|(P) = fﬂ%“i’dz = -Ei(-P) (A7.16}
P

Its value (figure A1.2) can be determined from the series [5}:

a
—-1)npn
E|(P) = -0.5772157 - In(P) - (—'n—’;'f—- (A7.17)
N=

The Ivantsov function, 1(P}, can also be written as a continued fraction:

1(P]=_P
P+1
1+ 1

P+.. [A7.18]

From the above, it can be seen that truncating the fraction at the zeroth, first, and
higher terms will lead to various approximations:

Ip =P
p
= 55
o= 2P
27 P+

1gp = 1(P) = Pexp(P)E |(P)
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These approximations are shown graphically in figure A7.4.

Substituting the zeroth approximation into equation A7.14 gives the solution which
was obtained for the case of a hemispherical tip (equation A7.11). Furthermore, it is
interesting to note that the modification of Zener's analysis made by Hillert [6} for
high supersaturations leads to:

VR _ C*-C
B = Gl

Co-Cs

which is equivalent to 2P = /(1 - @) or Q=2pP/(2P+]1). This is the second
approximation arising from the continued fraction representation when substituted
into equation A7.14. The paraboloid of revolution, for which the solution is given by
equation A7.15 or A7.18 with n equal to infinity, represents an isothermal dendrite,
and closely approximates the real, observed form.

From figure A7.4 it can be seen that 1) is a much better approximation than is I,
because the latter cannot be used when P is greater than unity. As the series
(equation A7.18) converges very slowly, it is usually preferable to use the lIvantsov
solution (equation A7.15). More exact, non-isothermal, solutions have been given by
Trivedi [7}.

Finally, the most recent analytical technique[8] to be used to study dendrite
morphology is one in which an equation is derived which describes the movement of
an element of the solid/liquid interface. This movement is supposed to be essentially
independent of the long-range diffusion and thermal fields, and the evolution of the
dendritic form can be computed relatively easily.

Figure A7.4:
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APPENDIX 8

DENDRITE TIP RADIUS AND SPACING

Growth at the Extremum

The relationships defining solutal (or thermal) diffusion at the hemispherical tip of a
needle-like crystal (appendix 7):

p= (A8.1}
or for a paraboloid of revolution
1P} = €} (A8.2}

do not specify an unique functional dependence between the tip radius and growth
conditions (supersaturation, undercooling). They only relate the product, RV, to the
supersaturation as shown in figure4.9. Therefore, another equation relating the
variables is required. For many years, this was done by adding a capillarity term to
the diffusion equation and determining the extremum of the corresponding equation.
This approach will be illustrated by means of the simple solution to equation A8.1:

— 2s
Q=p+ T (A8.3)

where s is the capillarity length (for the solutal case at low Q—values,
sc=F/ATok, and for the thermal case, st=~Pc/Ahf). In figure A8.1,
relationships such as equation A8.3 for various models are presented, in terms of
dimensionless variables, for free thermal dendrite growth and for a constant
undercooling, AT¢=-0.05Ahg/c(l). These curves indicate that the addition of a
capillarity term to equation A8.1 cuts off the straight line of the diffusion solution
(see also figure 4.9). The radius at which the cut-off ocecurs corresponds to the
critical radius of nucleation. This can easily be verified by noting that this radius is
the one which uses up the total supersaturation indicated by equation A8.3 to satisfy
the curvature which makes V (and therefore P) equal to zero. Therefore:

Q:_z_s_ v=20

where the critical radius, R°, for growth is equal to the critical radius, r°, for
nucleation. Substituting AT for §2 from equation A7.3 or A7.6 leads to:

o = %]? = % [A8.4}

Examination of equation A8.3 for the thermal or solutal case reveals that
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AT, = ﬂ(—ﬂf) + i [A8.5]
t a R

2 c
AT, = gl ATk + 2%‘— (A8.6}

The extremum (maximum) value of V defines the radius, Re, of figure 4.9. 1t is
shown in chapter5 (figure5.7) that the maximum value of V in an isothermal
environment corresponds to & minimum in AT for constant velocity growth.
Therefore, minimising AT in equation A8.5 or A8.6 will give the extremum radius.
This can be done by setting the first derivative of equation A8.5 or A8.6 equal to
zero. This leads to

= ,_ Tee | _1
2 Ahf vV [A8.7}
=3, J- Lahe v (A8.8]

for thermal dendrites and to

[A8.9}

/I‘D .
V'V
1/ 5 (A8.10}

for solutal dendrites when both are growing at the extremum. Equations A8.8 and
A8.10 reflect the well-known square-root-of-V relationships obtained for free
dendrite growth in a constant supersaturation environment. Others can be found in
the review paper by Glicksman et al [1].

Instead of using the extremum method, the recent trend has been to use stability
criteria which are analogous to those used in treating the stability of a planar
solid/liquid interface [2-4]. The published analyses for the dendrite case are very
complicated [5,6,7}. Therefore, some simpler cases will be treated here which
demonstrate the essential points of the more complete treatments.

RE = 2

Simple Solution of Equiaxed Dendrite Growth

Langer and Miiller-Krumbhaar [3} proposed a criterion which was based on extensive
numerical calculations, and the use of which gives results which are close to those
found experimentally. See the points on the curve in figure A8.1 where the open
cirele refers to Langer and Miiller-Krumbhaar's theory [3}, and the closed cirele is due
to Glicksman [1). This criterion supposes that the dendrite tip grows at a constant
value of 0= 1/4T2, where the stability constant, O(= .s/R%: ratio of the
product of the diffusion length, 8, and the caplllarlty length, % to the square of the
tip radius) is also given by the relationship, 0= l/2‘tr'R) Therefore, for the
dendrite tip radius it can be assumed that:

R= N\ [(A8.11}
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Figure A8.1:

where Aj is the limiting wavelength for a perturbation which can grow at the
solid/liquid interface. Using this value for the wavelength for a planar interface
(equation 3.22) as a zeroth approximation gives:

A= zr‘/% (A8.12}

Thus:

- I"
R =27 GG [A8.13]

The concentration gradient ahead of an advancing dendrite can be found from a
simple flux balance (equation A7.9):

¥*
Gg = - BeCiP [A8.14)

Evaluating C¥ from equation A7.1 and A7.12 gives:

__ __PapC
Ge = EWS%T(%;F} [A8.15}
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In a similar manner, the temperature gradient is found to be:

- Prahg
G R [A8.186]

Substituting equation A8.15 and A8.16 into equation A8.13 gives:

- -4m2l’
R= PemCop . Brahy (A8.17}
1 - pl(Pg) c

From this R-value (at the limit of morphological stability) one can calculate the
solutal and thermal undercoolings required to drive the dendrite tip growth. Using
equations A7.2 and A7.6 and the corresponding lvantsov solutions (equation A7.12)
gives:

- R 1
AT = mColl [~ plP, 1 [A8.18}
= - Ahg
ATy = (PG =20)

Neglecting the small curvature undercooling for growth at the limit of stability
(figure A8.1) and coupling the solutel and thermal fields at the interface by:

AT = AT, + ATy [A8.19}

leads to:

AT = mColl - }- (A_chf) I(Py) [A8.20}

S S
1 - pl(Pg)

Equations A8.20 and A8.17 determine the growth rate and tip radius of an equiaxed
dendrite as a function of AT in pure substances (Cy =0) or in alloys [8]. For a given
AT-value, the solution of these equations reveals a maximum in V with increasing
solute content in a given alloy system (figure A8.2), here succinonitrile-acetone.

Simple Solution of Constrained (Alloy) Dendrite Growth

During the directional growth of dendrites, the heat generated at the growing
interface is conducted away into the solid, due to the imposed temperature gradient.
Therefore, it can be assumed that the resultant behaviour (e.g. the tip undercooling)
is essentially determined by the solute flux around the tip. This flux is created by the
moving isotherms, thus forcing the tips to grow at a given rate into the liquid. This
case has been treated by Trivedi[9}, and in a similar but simpler manner, by the
present authors[10}. In the case of constrained growth, G is given by the heat flux in
the system, and G can be evaluated by equation A8.15. By doing this, one obtains a
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Figure A8.2:

quadratic equation which relates V and R via the Péclet number for solute diffusion
(R=2P.D/V)

2’2‘[ __gom + G =
Vz(Pclﬁ) + Vbn - pl(PL)} 0 [A8.21}

This solution for a directionally growing dendrite of parabolic form can be simplified
by using the hemispheric diffusion solution (equation4.11). At medium growth rates,
equation 4.11 can be further simplified to give equation 4.13 which can be written as:

- K'
V= R2 [A8.22}

where the constant, K', is equal to 4W2DF/(kATo)- In figure A8.3, these two
simple solutions are compared with each other. When V is greater than Vg, the tips
of the dendrites are very small (the primary spacing, )\1 is much greater than R)
and equation A8.22 is a good approximation. This has been confirmed by a paper
which compares the present results with those of Trivedi[l1}.

Note that, in deriving the R-V-G relationships, only equation A8.1 has been used and
not equation A8.3. This is possible because the radius for growth at the limit of
stability is much larger than the extremum radius (in good agreement with other
theories and experimental data — figure A8.1).
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Primary Spacing in Constrained Growth

It is assumed(10} that the shape of a fully developed dendrite, including the mean
volume of its branches, can be approximated by an ellipsoid of revolution (figure 4.14).
The radius of an ellipse is given by its semi-axes, a and b

2
. b
R=b (A8.23]

In the case of an hexagonal array, b= )‘l/ﬁ and a= AT'/G, where AT' is the
non-equilibrium solidification range:

A = '9—%5 {A8.24]

Substituting equation A8.27 into equation A8.29 and replacing, to a first
approximation, AT' by AT, gives a relationship for the primary trunk spacing:

A= 4.3(131;—”0 N/4y-1/4G-1/2 (A8.25]
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Secondary Spacing in Constrained or Unconstrained Growth

In order to simplify the model, it is assumed that only dendrite arms of two diameters
need to be considered. In reality, a distribution of arms of various thickness will
exist. Following Kattamis and Flemings{12] and Feurer and Wunderlin[13], the
situation illustrated in figure A8.4 will be analysed in a very approximate manner.
Two arms of radius, R and r, are located in a locally isothermal melt. Since, at the
interface between the solid and the liquid, local equilibrium will be established very
rapidly, the concentration along the surface of the cylindrical arms will differ; the
thinner arms will be in liquid of lower solute concentration. That is:

T'=Tf+mc{1 - %
T’=Tf+mC{ - _Ir:

mcR-cp = T(g- D (A8.26]

Therefore, solute will diffuse along the concentration gradient from thick to thin
arms while the solvent will diffuse from the thin to the thick arms. The thin arms
therefore tend to dissolve while the thicker arms tend to thicken.

Figure A8.4:
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For simplicity, it is assumed that the concentration gradient between two arms is
constant and that the diffusion is unidirectional. Now, if R is assumed to be much
greater than r, dR/dt can be neglected with respect to dr/dt, and the two fluxes
existing between the arms are:

R_
J=pC-=Cl {A8.27]

- dr

J=-Crl -k =™ A8.
CL(l k) : {A8.28]
Combining equations A8.26 to A8.28:

a__ I'p 1 _1
a mop-wd ® T (A8.29]

For small compositional differences in the liquid between the arms, Cl[ is
approximately equal to C;, the interdendritic congentration due to segregation. 1t is
further assumed that d is approximately equal to )\2 , leading to:

da_ _ID (L1
dt~ mC( -kX, ¢ -®) {A8.30]

where X’z is the arm spacing before ripening. All of the parameters except C; in
the first bracket on the right-hand side of equation A8.30 are assumed to be constant.
Furthermore, it is assumed that R/Nj; and ro/R are constant and that the
interdendritic liquid concentration is a linear function of time, starting with the alloy
concentration, Cq, and ending (due to segregation) at the composition, CJ

C,=Co* (CP - co)%f (A8.31]

where t is the time elapsed since the beginning of solidification, and tg is the local
solidification time. If C[" = C,, tp is approximately equal to (T, - To)/T.

Rearranging equation A8.30 and integrating from t=0 to t=tgf and from r=r, to
r =0gives:

X’ZRZ[%D +In(1 - 101 = Mty (A8.32]
where:

-I'Din( gt“)

S ©7, S [A8.33]
m(l ~kUCM - Cp)

M =

Assuming  further that R/Ng~0.5 and ro/R=0.5 gives Mtg=0.1(Xp)3.
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‘I'hus, when the arms have melted, Ay =2 Rz and therefore:

Ay = 5.5(Mtp1/3 [A8.34]

Due to the extreme simplification of the ripening phenomena described, the constant
factor of 5.5 in equation A8.34 should not be given too much importance. This applies
to both its value and its constancy. Nevertheless, the coarsening parameter, M, has
been shown to be of some use in estimating )\2 values in Al alloys[13].

(11

{2]
(3]
{41
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(6]

(7]
(8]

{91

{10]
{111
12}

{13]

REFERENCES

M.E.Glicksman, R.J.Schaeffer, J.D.Ayers: Metallurgical Transactions, 7A (1976)
1747

W.Oldfield: Materials Science and Engineering, 11 (1973) 211

J.S.Langer, H.Milller-Krumbhaar: Journal of Crystal Growth, 42 (1977) 11
J.S.Langer: Reviews of Modern Physics, 52 (1980) 1

J.S.Langer, H.Milller-Krumbhaar: Acta Metallurgica, 26 (1978) 1681 and 1689

H.Milller-Krumbhaar, J.S.Langer: Acta Metallurgica, 26 (1978) 1697 and Acta
Metallurgica, 29 (1981) 145

J.S.Langer: Physico~Che mical Hydrodynamics, 1 (1980) 41

J.Lipton, M.E.Glicksman, W.Kurz: Materials Science and Engineering, Special
Issue on 'Solidification Microstructures' (1984)

R.Trivedi: Journal of Crystal Growth, 49 (1980) 219
W.Kurz, D.J.Fisher: Acta Metallurgica, 29 (1981) 11
H.Esaka, W.Kurz: submitted to Journal of Crystal Growth, (1984)

T.Z.Kattamis, M.C.Flemings: Transactions of the Metallurgical Society of
AIME, 233 (1965) 992

U.Feurer, R.Wunderlin: Fachbericht DGM, 1977 (see detailed reference in
chapter 4)

WWw.ira n{mavad.com
16

Age Cpmtizs 9 Glgedily gy



APPENDIX 9

EUTECTIC GROWTH

This text follows the treatment of Jackson and Hunt (1], but is a simplified version of
the latter paper. Figure 5.2 shows the corresponding phase diagram and interface
geometry. Using symmetry arguments (appendix 2), the analysis of a solidifying
lamellar eutectic interface can be reduced firstly to the consideration of a pair of
lamellae. No net mass transport can occur between this pair and another pair under
steady-state conditions because this would cause changes in the morphology and
violate the assumption of steady-state behaviour. Thus, the concentration gradient in
the y-direction is zero at the mid-point of each lamella (figure A9.1). Secondly,
attention can be further restricted to half of each lamella because, agein, there can
be no net transport of solute in or out of this symmetry element.

The differential equation describing the solute distribution in the melt ahead of a
steadily advancing interface is (A2.6):

dic , 9%c , v Oc _
dy? 9z D 9z

and it has been shown (appendix 2) that the general solution satisfying this equation
consists of products of circular and exponential functions. It is logical to associate
the exponential function with the z-variation of the solution, since it is known that
the boundary layer has this form for a single-phase interface. 1t is equally logical to
associate the circular functions with the alternating pattern of eutectic phases. Thus,
to a first approximation, the distribution of component B can be described by:

C = Cq *+ Aexp(- V—DZ) + Bexp(~bz)cos(gy) {A9.1]

This tentative solution can be seen to be made up of an exponential term which
reflects the planarity of the interface as a whole, and another term which reflects
the alternating pattern of the two phases. The cosine function is chosen because the
expression describing the gradient of the interface concentration in the y-direction
must be able to take zero values at the origin of the region considered and at A/2
(figure A9.1). Another way of regarding the choice of the function in equation AS.1 is
to imagine that it reflects the interface solute distributions depicted in figure 5.3.
Thus, equation A9.1 without the third term on the right-hand side could describe the
solute distribution ahead of either of the single phases (figure 5.3a). The
re-introduction of the third term can then be looked upon as being the expected
solution when the originally single phase interface is 'perturbed' by the addition of the
second phase.

1t is now necessary to determine the constants, A, B, b, and g. The value of g can be
immediately deterniined because, again due to symmetry considerations, the
derivative of the solution with respect to y, 0C/0dy, must be equel to zero when
y= A\/2. Thus:

C = Cg + Aexp(~ V—DZ) + Bexp(-bz)cos(z-‘%l ) [A9.2]
WWW.iran{mavad.Com
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Figure A9.1:

The derivation of b has already been discussed (equations A2.10 and A2.11). 1t is equal

to:
_ v vV y2 27 2
b= o5t /(—ZD) +( )\) {A9.3]

This relatively complicated expression can be simplified on the basis of experimental
observation. Firstly, it is noted that the term, V/2D, is the inverse of the equivalent
solute boundary layer of a planar interface. lts value will be relatively small, whereas
27/N is the wave number of the eutectic and will be large, due to the small values of
A which are usually encountered. Therefore:

and equation A9.3 can be simplified to:

27T
b = =—/—
A

by neglecting terms in V/2D. Thus, equation A9.2 can now be writtem

C = Ce + Aexp(~ YB)+ Bexp(——zl)\z )eos( 2—7%) [A9.4]
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The values of the constants, A, B, can be found by forcing the above sovltion to
satisfy the flux condition at the interface. The fluxes can be deduced from the phase
diegram. The general flux boundary condition is:

Vik - 1)C* = D( —gg)po (A9.5]

but, because the variation of the interface concentration, with respect to C,, is
relatively small in most cases, it can be supposed that C* =~ C,.
Thus, the flux conditions for the two eutectic phases can be written:

alpha-phase: V(kgy - 1)Cq = D(—g—S)Z:o {A9.6]
beta-phase: ~Vlkg - 1)(100 - Cg) = D(%)Fo (A9.7]

The negative sign in the case of the beta-phase appears because the interface
gradient of Cpg in the growth direction is expected to be positive. The
concentration gradient at the solid/liquid interface can be found from equation A9.4:

(_((:;__(23)z= = '% A -Z%\r— B cos(uxi ) {A9.8]

The alpha-phase extends from the origin to the point, f\/2, where f is the volume

fraction of the alpha-phase.

Using the method of 'weighted residuals' (appendix 2), the values of A and B (the
'weights') can be found by satisfying the flux boundary conditions, equations A9.6 and
A9.7, in an average fashion over the alpha and beta interfaces, i.e.:

FN2 FN2
ac
- = fp -nd A9.9
oﬁ(ka 1)Cedy of(—a?)z_n y {A9.9]
N2 ma
- fVikq - 1X100 - Co)d =_ﬁ)( Cy,_0d {A9.10]
n\/z-[ ﬁ € F))’\/z 'B—z_ 2=0 Y

Inserting the value of (0C/0z),=¢ from equation A9.8, and carrying out the
integrations yields the simultaneous algebraic equations:

fVAA + 2Dsin{THB = (1 - kg )CoefVA (A9.11]
(1 - DVAA - 2Dsin(TDB = (kg ~ (100 - Ce)1 - nHVA (A9.12]

and the values of A and B are easily found to be:

a=fc'-cP {A9.13]
_ (1 -~ DVAC'
B = o Dsin(mD) (A9.14]
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Note that A v 2 very small in general, and will be equal to zero if the phases have
the same density. Here, C' is the difference in composition between the ends of the
eutectic tie-line and CP is the difference in composition between the eutectic and
the maximum solid solubility in the 3-phase (figure A9.2).

Thus, a solution has been obtained which satisfies most of the boundary conditions.
The final condition to be satified is the coupling condition, which relates the local
melting point to the imposed temperature distribution. This has already been depicted
in a qualitative fashion in figure 5.5. 1f account were to be taken of the detailed
shape of the eutectic interface, the problem would rapidly become insoluble because
of the need to satisfy the coupling condition at each point(§). Instead, the eutectic
interface is assumed to be perfectly plaenar, in order to make a solution possible, and
the quantities involved are treated in an average fashion. The satisfaction of the
coupling condition can then be achieved in three steps. These involve calculating the
average solute undercooling and the average curvature undercooling for each phese,
and then making the two total_undercoolings equal. The average concentration
differences of the liquid, AC=C-Cg,, at the alpha- and beta-phase interfaces,
relative to the eutectic composition will first be found. From equation A9.4, they can
be shown to be, for z = 0:

FN/2
5o = i [ 1hs sees ey

0o A/z

AT A = 2 2T

A% = oon fA+ Bcos(Tx)] dy
FN/2

Figure A9.2:

§ Series et al[2] have solved this mathematically intractable
problem by using a hybrid method in which an electrical
analogue was used to provide a basis for further calculations.
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giving:

ACox= A+B ﬂ.’]’ﬁ__}rf_). {A9.15]
NPl _ psin(mf)
acg = a-BIuTh {A9.16]

Since A is usually negligible, it can be seen that the average concentration difference
in component B at the (¢-phase interface is positive, while that at the (3-phase is
negative. The mean solute undercoolings, ATC, with respect to the eutectic
temperature (figure 5.5), can be found by multiplying the above concentration
differences by the relevant liquidus slopes, mg (=<0) and mg (>=0). The solute
undercoolings are therefore:

ar§ = -mg(a + B SO [A9.17]
i _p sin(mf)
arg = -mgia - B ZT0 [A9.18]

The second source of undercooling to be considered is the average undercooling due
to the curvature of the interface. First note that the average curvature of a line
between two points which are a distance, L, apart can be found by integrating the
general expression for the curvature (appendix 3),

K= g +1_z| 372 {A9.19]

between the two points. Thus:

L

_- l n
K=1 [(1 T 2732 W
o

IDUAURAE SR
Af/2 N(1-fy/2

Figure A9.3:

www.iran-mavad.com
221

Age medize 9 Olgedil @2 ye



Making the successive substitutions, Z = z' and tan{ &) = Z (figure A9.3) leads to:

Again using the above identities leads to:

R = Lsinfarctan(z)I; (A9.20]

1
L

The form of the eutectic interface is assumed to be as shown in figure A9.3. Thus, the
average curvature of the beta-phase can be found by substituting the slopes at
y =fN/2 and A/2 into equation A9.20:

Ra - ZSi?(xoa_)

= __ 2sin(8g)
Kg=-{-n
Here, the curvature has been defined to be positive if the solid projects into the melt.
Mathematically speaking, it is negative. The curvature is defined in this way so as to
give a positive undercooling (for a solid projection) when combined with the (positive)
Gibbs-Thomson coefficient. Therefore, using the associated Gibbs=Thomson
coefficients, the curvature undercoolings become:

A% = 2l sr,l)r:( O) {A9.21]
8. 2I'3sin( )
a1B= (ng_ f))\ﬁ [A9.22]

Combining equations A9.17 or A9.18 with equations A9.2]1 or A9.22 gives the total
undercooling of the two phases:

sln(7rf)

. 2n sfin( 3] {A9.23]

A’l‘a = —ma[A +B

__ _n sin(mD) 2 Iasin(8g)
aTg =-mg(A -B SR —p] + l_sf;‘)\B {A9.24]

Multiplying equation A9.23 by mﬁ and equation A9.24 by mg, and subtracting one
from the other gives:

_ - sin(mf) |, 2m sin ) _ 2m sin(03)
mg ATy - mgATg =-mymgB T~ —5—;{ o) - Zmor Bf))\ B

However, use of the coupling condition (eppendix 2) requires that the alpha- and
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beta-interfaces should lie on the same isotherm. Due to the very small uistances
between the phases (typically of the order of a few microns) and their high thermal
conductivities, no substantial temperature dif ference can exist between the o and ﬁ
phases. Therefore, ATy = ATﬁ = AT (figure 5.5):

at=- Doamg B FRT-D ¢ ‘1w e W T %A(B‘J_SI" %),

Substituting for B from equation 9.14 gives:

_ (o} 201 - ) I} sin( Oy) - 2fm sin( 0g)
AT =~ ggrgﬁmav 37D + mﬁ f(? f)A((xmB - ma—{)’ 3 {A9.25]

This can be written (see also equation 5.8):

AT = KgVA + ‘ir {A9.26]
where the physical constants of the alloy are:
=-mpmg_, _C
Ke e =5 [A9.27]
and
K, = 2-Dmg I‘agﬂ_ﬂa)_-_mu Iigsin(6g) {A9.28]

fl-f)(mﬁ-ma

Assuming that the A ~value chosen by the eutectic is the one which makes AT a
minimum, i.e.:

d(AT) _ Ke =
o KeV - 35 =0
it is found that:
Ay = Ke - 47D fmq 1 Ibsmg Qﬁ) (- f!mﬁ T sin(6,) (A9.29]

Re ~ £fO=1) mach

This equation implies that the eutectic spacings will be larger when a small volume
fraction, f, of one of the phases is present (although the growth form will probably be
fibrous rather than lamellar in this case; chapter 5). The spacings will also be larger
when the concentration difference, C', is small. Both of these effects have been
observed experimentally.

1t is left as an exercise for the reader to develop the other relationships which govern
eutectic growth (equations5.11 and 5.12). Note that the functional relationship
between AT and V (equation 5.11) is analogous to the dendrite growth equation at the

extremum (equations A8.8 or A8.10).
WWW. Iran mavad .com
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Finally, it will be useful to compare the approximate solution above with the more
exact derivation performed by Jackson and Hunt(1]. Writing their expression for
A2V in terms of the nomenclature used in this book gives:

nv=%}£mm§pﬂi%%%%%ggﬂnﬁﬁi&d (A9.30]

where P' = Z(1/n373)sin2(n 1) (§).

Equations A9.29 and A9.30 differ only with respeet to the first multiplying term on
the right-hand side. If the eomplicated expression, P' (equation A9.30), is compared
with the equivalent expression, f(1~f)/2T, the agreement is found to be quite
reasonable (table A9.1) in view of the comparative simplicity of the derivation. As
one would expect from the symmetrical form of the approximate solution used, the
accuracy is greatest for f-values of about 0.5.

TABLE A9.1: COMPARISON OF TERMS APPEARING IN
THE JACKSON-HUNT (JH) AND PRESENT ANALYSES

f P'=$(l/n31r3)sin2(n1rf) (JH) (£-f2)/2mw Error(%)
0 0 0 0
0.1 0.00626 0.01432 129
0.2 0.01633 0.02546 56
0.3 0.02553 0.03342 31
0.4 0.03174 0.03820 20
0.5 0.03392 0.03820 17

the results for higher f-values are sy mmetrical about f = 0.5

REFERENCES
{11 K.A.Jackson, J.D.Hunt: Transactions of the Metallurgical Society of AIME, 236
(1966) 1129
{2] R.W.Series, J.D.Hunt, K.A.Jackson: Journal of Crystal Growth, 40 (1977) 221

{3] J.N.Clark, J.T.Edwards, R.Elliott: Metallurgical Transactions, 6A (1975) 232

§ A table of values of this function can be found in reference 3.
Note that the form of P' can be deduced immediately by using
equation A2.29. This is possible because equations A9.6 and A9.7
define a step function with a Jump' (at £A/2) which has a height
equal to the sum of the gradients. These parameters of the
jump merely have to be inserted into equation A2.29 in order to
give the required series.
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APPENDIX 10

TRANSIENTS IN SOLUTE DIFFUSION

Initial Transient

As shown previously (chapter 3), the build-up of solute ahead of a planar solid/liquid
interface takes some time - the time required for the saturation of the diffusion
boundary layer. 1t is assumed, to a first approximation, that this process is rapid
enough to ensure the existence of a quasi-steady-state solute distribution. In this
case, the concentration decreases exponentially from the interface into the liquid,
and the equivalent boundary layer is always of the same thickness (appendix 2):

Assuming that the growth rate, V, increases instantaneously to a constant value at
the start of solidification, the flux at an interface of unit area, due to the differing
solubilities of the solute in the two phases will be:

J] = VCX(1 ~ k) [A10.1]

Initially, this flux is greater than the flux created by the concentration gradient in
the liquid:

Jg = -DG,¢ {A10.2)

The difference between the two fluxes will be used to 'filI' the diffusion boundary
layer, of thiekness 50, to a mean concentration, C;:

I -Jdg= g_tCL Se {A10.3)

Recalling that a steady-state profile is assumed to exist, the concentration gradient
at the solid/liquid interface is given directly by the first derivative (at z=0) of
equation 3.2, with AC, in this transient state being replaced by AC=(C{ -C,)
(figure A10.1):

Ge = (Co-CP [A10.4]

Therefore, for unit area:
Jg = (C} - Cu)V

and

2D dG,_ — KC* .
v aro- V(Co ke (A10.5]
WWW.iranz—zmavad.com
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Figure A10.1:

Noting that, for the triangulaer equivalent boundary layer, the variation in the mean
concentration is related to the variation in interface concentration, e.g.:

ac, = chf

with V=dz'/dt:

dz {A10.6]

n
o<

Integrating:

fC| -
dC{ = v -/;]
- KC* z
Co h D

www.iran-mavad.com
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gives:
InfSall =K ji/k = ¥2'
Co - kCf D
or

C¥ = %0[1 - (1 - K)exp(- l—‘-zb'—y)] (a10.7]

Figure 6.2 illustrates the behaviour of this expression. It is a good approximation to
the exact solution derived by Smithetal {1].

C,

Figure A10.2:
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Final Transient

While the initial transient is required to build up a boundary layer, the final transient
is the result of the 'eollision’ of the boundary layer with the end of the specimen
(figure A10.2). This problem has been solved by Smith, Tiller, and Rutter (1] in the
following way for the special case where the system has reached the steady-state.
The origin of the z-axis is placed at the end of the specimen and the diffusion
equation becomes, in terms of the new x-coordinate (which does not move with the
solid/liquid interface):

a’C, . 1 dcy

Ll {A10.8]
The boundary conditions apply for all values of t. At x=0 (the end of the specimen)
the diffusion flux must be equal to zero and:

dac,

ax -0 {A10.9]

and at the solid/liquid interface, x = x*:

ggl = ! *
ax ~ pCiP {A10.10]

where x* is the length of the liquid zone.

In order to meet the first boundary condition, an imaginary source placed in a
symmetrical position with respect to the real solid/liquid interface is introduced. This
is equivalent to a localisation of the mass flux at the end of the specimen
(figure A10.2). The steady-state distributions at the two interfaces in an infinite
specimen are:

G, = Cyll + Rexpl- Yix* 2 ¥ (A10.11]
(A o K D

where z=x*% x. In order to cope with the second boundary condition
(equation A10.10) when the sources are close enough to interact, further sources
(interfaces) are introduced at distances, nx*, where n is an integer (figure A10.3).
These sources travel at speeds which are ntimes the speed of the real interface. This
superposition permits the calculation of the necessary coefficients by constraining
the interface to obey the flux balance (equation A10.10):

44}
Co=)+ E Cnp | exp[—n!D(nx* -]+ exp[—n%(nx* + 01} (A10.12]
Co =1

This procedure is given in more detail in the original reference and leads to:
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= 1-k _ 2Vx (1-K2-Kk) .  6VX
Cs(x)—l+3—lTr(exp( 5 )+5(l+k)(2+k)exp( D )+ ..

(1 -KkX2-K) ... (n -%)

(n+ DV
...+(2n+ l)‘(l +k)(2+k) . (n+mexp[— nin D x]

{A10.13]

The above equation describes the final transient in the solid for the case where a
steady-state solute pile-up has been reached at the solid/liquid interface.

Ci
-
v
1

— (o}

3v

1

ax* 2x*
Figure A10.3:
REFERENCES

{11 V.G.Smith, W.A.Tiller, J.W.Rutter: Canadian Journal of Physies, 33 (1955) 723
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APPENDIX 11

MASS BALANCE EQUATIONS

The different solubilities of a solute in the liquid and solid phases, together with the
differences in mobility, lead to concentration variations known as segregation.
Provided that the mass transport in the liquid is infinitely rapid (no concentration
gradient in the liquid) the corresponding functions can easily be derived from a mass
balance (where C is expressed in per cent):

£Cq + £,C, = 100
[All.1]
&fCq) + A, C,) = 0

These equations state that all of the solute whiech cannot be incorporated into the
solid must enter the liquid. No account is taken here of all of the other possible
reactions which might occur in a practical situation. For instance, solute vaporisation
or crucible reaction.

Lever Rule

The simplest case to which a mass balance can be applied is the case of equilibrium
solidification (no concentration gradient in the solid or liquid). This ean be expressed
by the relations:

D, > Dg > LV (A11.2]
Since L is the length of the solidifying system (figure All.1), equation A11.2 states
that the diffusion boundary layer, §o=2D/V, is much larger then the maximum
distance, L, over which either solid or liquid state diffusion can ocecur. Similarly, it
can be supposed that, if the growth rate, V, of the solid is constant and equal to
L/tg, the length of the specimen must be less than the characteristic dif fusion
length:

L < 4/Dgtg {A11.3]

Under these conditions:

dCy _ ac,

= ==5 = 0

97 97’

Taking the differential form of equation All.l, Cg=kCy, dCg=kdC;, fg=I1-f;,
and dfg = ~df; can be substituted and integrations performed:

dCL - df
pCy 1- 1.SP
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giving:

co = l_Pfs [All.4]

Figure All.l:

Non-Equilibrium Solidification with Back-Diffusion and

Rapid Mixing in the Liquid

The case of a bar having & constant cross-section, A, and a zero concentration
gradient, due to rapid mass transport in the liquid (C; =Cy¥) and limited diffusion in
the solid, is shown in figure 6.3. For this case, Brody and E!lemings[l] have developed
a flux balanece which, in a slightly modified form (sum of redistributed mass

represented by the surfaces, Ay + Ag+ A3=0, in figure 6.3):

(Cy - Cg*)Ads = (L - )AAC, + dCg*A _%s {A11.5]

Here, 7\3 represents the surface of the equivalent boundary layer in the solid
(appendix 2). Recognising that fg = s/L, dfg = ds/L, 55 = 2Dg/V = 2Dgdt/ds,
Cg* = kCy, and dCg* = kdC, then:

dt
S ds

www.iran-mavad.com
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Dividing by L, and using a parabolic growth rate relationship (e.g. equation A1.13):
S o= L {A11.7)
Evaluating ds/dt, substituting the results into equation A11.6, and rearranging gives:
dCe . df
pC - (T=T3) + Zakfs (AlL8)
where « is & dimensionless solid-state back-diffusion parameter (dimensionless time
= Fourier number):
o = Dﬁ%r. {A11.9]
(compare with equation A11.3) from which

ch
1- fs(l - 2Qek)

and integratlon leads to:

g =1 - 10 - 2c0i) T 2K (A11.10]
o

This equation is an important one because it includes the two limiting cases (for

ac /9z'=
Lever rule: (equation Al11.4) when & = 0.5

Scheil's equation: when Dg = 0 (no solid-state diffusion) @ = 0. That is:

C -
(_:l = ft(k D {Al1.11)
o

It can be seen that, according to equation A11.9, the case @ =0.5 (lever rule) does not
correspond to the physical characteristics of equilibrium solidification. There, &
should approach infinity (equation Al11.3). Therefore, a modified back-diffusion
parameter, &', has been proposed by Clyne and Kurz{2]. The basis of this calculation
is that, in the original Brody-Flemings treatment at high «-values, solute was not
conserved in the system. This ean be easily understood with the aid of figure 6.3,
where the solid diffusion boundary layer, 55, still has a small value. If this
5 ~value (proportional to «x) becomes comparable in size to, or greater than, the
solidified length, s, there is no longer any mass conservation according to
equation Al1.5 because the end effects are not considered. In reality, the initial
specimen end (z'=0) is an isolated system boundary and solute cannot leave the
system at that point. In order to find a simple solution to this problem it will be
considered that diffusion is semi-infinite and that the tail of the diffusion boundary
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layer at z'-values less than zero (outside of the specimen) has to be tuxen into
account.

For the purpose of the analysis, the coordinates are changed: y =0 is fixed at the
solid/liquid interface and only the solid concentration profile shown in figure A11.2 is
considered. The end of the specimen (z'=0) then corresponds to the cut-off distance
on the y-axis (negative z'-axis). The total amount of solute in the boundary layer in
the solid is Ap. The neglected portion of the solute, due to the small cut-off
distance, is Ag. These can be obtained from [2]:

(44
ATZﬁ'dy=c'o %S {All.12]

@
Ap =fc'dy = C% gsexp[_ 2 (A11.13)
¥ S

Here, it is assumed to a first approximation that the back-diffusion can be deseribed

Figure Al11.2:
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by an exponential :unction. In order to estimate the correction factor necessary to
cope with the cut-off effect, a parameter, L, is defined:

te

1 [ AE
Zla)= ¢ | — at {Al1.14)
f AT
o]

It will be noted that even if C'y changes during solidification, the ratio contained in
the integral will be independent of such changes. For parabolic growth laws
(equation A11.7):

.= t
yi=L i {All.15])

Combining equations A11.12 to Al11.15 gives:

te
-1 _2L [t
D=4, fot 5 T (a1L16)
o

Recognising that the exponential term in the integral of equation A11.16 is equal to
(-1/2¢) leads tos

(x) = expl-~ '2'1621 (A11.17)

Equation A11.17 approaches zero asymptotically at low «-values and unity at high
«-values. Therefore, in the Jow (x-range it represents the deviation from & and in
the high O¢-renge it represents the deviation from the limiting value, &'=0.5. A
spline-like function which connects ' and & must therefore be found which satisfies
the two boundary conditions: @' - @ as L(X) - 0 and @' - 0.5 as L{(&) — 1. An
expression which has the required form (figure A11.3) is:

' = ol - expl-g)] - Lexpl- 5 (A11.18)

Substitution of &' (equation A11.18) for @ in equation A11.10 permits the calculation
of any solute distribution when diffusion in the liquid is very rapid. That is, it is not
necessary to decide whether the lever rule or the Scheil case has to be used in a given
case. This is of great importance, particularly for alloys which contain interstitial
and substitutional solutes. In figure 11.3, typical values of & for P and C in delta-Fe
are given. It can be seen that C obeys the lever rule and P is intermediate in
behaviour.

The most important application of equation A11.10 is related to the estimation of
microsegregation, i.e. the modelling of the behaviour of the mushy zone. Replacing L
by the characteristic diffusion distance, A/2Z (= N|/2 for cells and Ag/2 for
dendrites; figures6.6 and 6.7) leads to:

o = 4_Dsth {A11.19]

www.iran-mavad.com
234

Age medize 9 Olgedil @2 ye



0.5 . — — .
I
1
1
1
:
L

a=
[}
'
03 Y
]
- !
o] [}
'
'
7
’ R
/ a'=a(1-e®)- ze™
/
4
0.1
Pinb-Fe cinb-Fe
: . Jd N Y |
10°2 107! 10 102
a
Figure All1.3:

By substituting &' from equation A11.18 into equation A11.10, the fraction solidified
fA11.20]

can be calculated:
1 -2’k
- 1 _ T¢g~T k-1
fs= r—zaw ! - 77— !
Here, Tg¢ is the melting point of the pure element, and C has been replaced by T,
via the liquidus slope. The first derivative with respect to temperature is:
20k - 1 2 ~20'k -k
df, 1 k-1 k-1
ds - _1 - -
aT k_l(Tf TL) (Tf T) fA11.21]
in order to make numerical calculations of the

This relationship can be used
solidification microstrueture of cast alloys (appendix 1).
Precipitation in a Ternary System, A-B-C, in the Absence
of Solid-State Diffusion
When the effect of back-diffusion is negligible, as in the case of a large volume of
precipitating phase at the end of solidification, i.e. the large concentration gradients
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close to fg=1 are avoided, Scheil's equation (All.11) can be used. For two solute
elements, B,C, the corresponding solute profiles (trace of interface concentration as
a function of fg) are:

c (kg - 1)
(%) = £,%B
CoB ™ {Al1.22]

Ciy - ¢kc-1

(E‘O)C = C
When the solubility product of the phase, Bxcy, is reached, precipitation will
begin (if there is no difficulty of nucleation):

X y._

(CYB (CC KBny {A11.23)

From equations A11.22 and A11.23:
+ - -
KByCy CoBM(CICY B G TX Y

When precipitation begins, f; = fp, and the preecipitate volume is:

1 ,
fp = [Kp,C (Colp ™(Colc ) BT ¥kC - XY (Al11.24]

Solidification Path in Ternary Systems

In general, the path of solidification (trace of liquid or solid composition as a function
of f5) can be obtained in the case of solidification by relating the composition to f,
which must be the same for all of the elements). Using equation A11.10 and Al11.18:

c -PB
(6l )g = (1 - ugfy) up
(s} [A11.25])
_Pc
E4)c = (1 -ucty UC
o
where u; = 1-2¢¢;'k; and pj = 1-kj. Eliminating fg:
C Coy 1 ThS ) Tup
(&g = {1— UB() - (2t)c] PC } B {A11.26
C,’B aall - (EJc ]

Post-Solidification Homogenisation of Interdendritic Segregation
In order to determine the changes which occur during homogenisation of the eooling
solid after sclidification, only one dendrite arm need be considered (due to symmetry
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~ appendix 2). In principle, the form of the solute segregation can be scribed
approximately by the Scheil equation (figure 11.4). Here, it will be shown that all of
the possible original distributions can be related to each other by using dimensionless
constants.

The changes can be treated approximately using the one-dimensional time-dependent
dif fusion equation:

2
D g;% = —g—tc {A11.27]

1t is known (appendix 2) that a likely solution to this equation involves circular and
exponential functions. The exponential function is more likely to be associated with
the time dependence, and a cosine or sine funection is more likely to reflect the
characteristics of distributions sueh as those in figure All.4. In practice, of course,
the solute distribution may take any form at all. However, it will be shown below that
analogous changes occur in the distribution, regardless of the initial state. Thus, one
Can suppose that:

C =Cgy + OCexplat)cos(bx) [A11.28)

where OC is the initial amplitude of the concentration variation (figure A11.4).
Substltution of the derivatives of equation 11.28 into equation 11.27 shows that:

a= ~Dsb2
therefore:
C = Co + 8Cexp(-Dgb2t)cos(bx) (A11.29)

The value of b can be evaluated by using the boundeary conditions. Thus, the gradient
of the concentration at the origin must be zero at all times, t, since the origin is &
point of symmetry. This can be assumed to be true even though the gradient of
distributions such as those illustrated In figure A11.4 is not defined mathematically.
The zero gradient condition is already satisfied by equation A11.28 at A/2. The
gradient of concentration must also be zero at A (another point of symmetry) for all
values of t. This is only true if:

sin(bA) = 0

8C

C(x, 0)

c 7 [\

Figure All.4:
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so that:
bA = nT

where n is an integer. The final general solution is:

2.2
C = Cg + 8Cexp(- Dg E—;\E-t)cos( "7;\" ) {A11,30]

The last condition to be satisfied is that tlie concentration distribution at the start of
homogenisation (figure A 11.4) should be described by equation A11.30 (with t equal to
zero). Obviously, such a distribution cannot be described by the latter expression
unless the initial distribution happens to be sinusoidal. However, because the dif fusion
equation (A11.27) is linear, any number of similar equations (with different values of
n) can be added together. This is simply the technique of Fourier analysis (appendix 2)
and leads to a solution, for any initial solute distribution described by f(x), of the
form:

A

= 2 _ QZ_WZ_ nmTx nmwx
C=Cy+ )\Zexp( Ds 3=t cos(™% o) f(xcos( B ax (A11.31]

This solution can be used to determine the concentration distribution at any time.
Recall that, using the method described in appendix 2, the result of performing the
integration above can be written down immediately when the jumps' in the function
and its derivatives are known.

Suppose that the measured distribution is parabolic (figure Al1l.4 ) with maximum,
CM, minimum, C,,, and average, Co. There is no jump in the function at 0, A,
2\, ... n , but there is a jump of ~(8/A}C™M-C,) in the first derivative at 0 and
at A. There is no jump in the second and higher derivatives. Thus, using
equation A2.29, one can find immediately that the Fourier coefficients are given by:

- _16
Ap = ;Z-XZ (CM-Cpy)

Use of this technique is considerably easier than integrating expressions of the type,
x2cosnx. Note that when assuming an asymmetrical distribution such as the
parabolic one (figure All.4), the maximum and minimum values of the distribution
are not Independent. Instead, they are related by the requirement that the average
concentration should be equal to the original concentration, C,.

One can introduce the dimensionless value, 1, which is defined to be the instantaneous
value of the amplitude of the distribution compared with_its original value, say
éc/(cm -Cip).  Another dimensionless constant, nZT Dgt/ N\ (compare
with equation A11.9), arises naturally in the above calculation. The value,
A/n27 Dy, is usually called the relaxation time, 7y, of that component.

For the present purpose, the simple slnusoidal concentration variation is quite useful
because, as can be seen from equation All1.30, the higher-order terms (short
wavelengths) decay much more rapidly than the longer ones, and the ho mogenisation
process will therefore ultimately be determined by the relaxation time of the
lowest-order  term, i.e. for Ty = A2/T2Dg, If the initial concentration
variation is given approximately by:

C(x,0) = Cg + BCcos(—”)\—") (A11.32]
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the solution for the lowest-order term is:
C(x,1) = C, + BCcos(ﬂ)exp(- L) [A11.33]
¢ (o] A T .

where 7 = T;. The maximum concentration at x=0, CM, changes with time
according to

C™(t) = Co + 8Cexp(- 3 ) (A11.34]
giving, after t=7
cm(r)=co+-§e—c=co+o.37 6c (A11.35)

or after t =37
cMG37)=Co+ 95 = o+ 0.058C [A11.36)
e

It can be seen that the secondary dendrite arm spacing will have a significant effect
upon the annealing time since the relaxation time is proportional to A2. High
solidification rates, which reduce A, will have a marked effect upon the reduction of
the annealing time. For example, in order to reduce the amplitude of the
concentration variation to 5% of its initial value the annealing time can be obtained
by using equations A11.36 and A11.33:

N2
tp.05 = 0.3 D, (A11.37]

Using equation A11.37, the annealing temperature required to homogenise (to less
than 5% variation) an alloy with a given dendrite arm spacing within a given time can
be calculated:

To.05 = D

RIn( 0'30)'\2) [A11.38]

where Q and D are the activation energy and pre-exponential term respectively in
the Arrhenius expression for the temperature dependence of the diffusivity.
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APPENDIX 12

A GUIDE TO RELEVANT PHYSICAL PROPERTIES

FOR SOLIDIFICATION PROBLEMS

olumetric properties such as Ahf have been calculated on the basis of the density at the

elting point

Properties of Pure Materials at the Melting Point

roperty Units
0
f C
f Ko
he J/m
S¢ J/m3K
:L W/mK
"S W/IT};K
L J/m K
. J/m3K
% kg/m3
X kg/m3
: 2
! m°/s
s m2/s
| kg/mol
s m3/mol
m
Ahf/c K
2
J/m
mK
r m
WV -

Al

660.4
933.6
-9.5 x 108
1.02 x 108
95

210

2.58 x 10°
3.0 x 106
2.39 x 103
2.55 x 10°
37 x 1078
70 x 1078
27 x 1073
11x10°8
368

93 x 10°
0.9x 107"
0.24 x 1072
6.5 x 1072

3

Cu

1084.9
1358

9
~1.62 x 10
1.2 x 108
166
244

6
3.96x 10
3.63 x 10°
8.0 x 103
7.67 x 10°
42x 1078

-6

67 x 10
63.5x 10
8.3 x l(]—6
409
177 x 10™
1.5 x 1077
0.37 x 1072
2.2x 1072

3

3

O-Fe (Y-Fe*)

1536 (1526)
1809 (1799)
-1.93 x 10°
1.07 x 106
35

33

5.74 x lO6
5.73 x 10°
7.0 x 103
7.25 x 10°
6.1x 1070
5.8% 1070
55.8 x 10~
7.7x 1078
336

204 x 1079
1.9x 1077
0.57 x 107
3.6(4.1) x 10

3

* metastable, ** succinonitrile
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NC(CZil4)CN**

58.08
331.23

4.6 %10
1.4 x 10°
0.223

0.225

2.0 x 106
2.0 x 106
0.988 x 10°
1.05 x 10°
0.116 x 107°
0.112 x 107°
80 x 1073
76 x 1078
23
9x10”
0.64x 1077
2.78 x 107
6 x 1072

3



Properties of Aluminium Alloys

Property Units Al-Cu Al-Cu * Al-Si

c, wt% 2 33.2 6

T, oC(K) 656 (929) 548 (821) 624 (897)
At K 32 - 240%*

T, °oCc(K) - 548 (821) -

Ce wt% s 33.2 -

(o) wt% - 46.9 -

My K/wt% -2.6 ~4,6 -6

mB K/wt% - 4.8 -

Koy - 0.14 0.17 0.13

kg - - 0.71 -

IB - N 0.546 =

D, mis  3x10” 3x 107 3x107°
D, m¥s 3x1071d - 1x1071?
I mK 0.9x107  0.9x107" 0.9 x 1077
Iz mK - 1x107" -

Se m 20 x 1079 - L, B 1079
P’ - - 3.35 x 10 -

* eutectic, ** metastable
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Al-Si *

12.6

577 (850)
577 (850)
12.6
98,2
-7.5
17.5
0.13
2x 10"
0.127
3 x 10«9
0.9 x 1077
2 X 10—.7

4

8.9 x 1073



Property

C
o
T,
ATo
Te or T

Ce or CP

Properties of Iron Alloys

8Fe-C

0.09
1531 (1804)
36

1493 (1766 p)
0.53 (p)

YFe-C

0.6
1490 (1763)
72

1155 (1428 e)
4.26 [e]

2x10°8

1x107°
-7

1.9x 10

7.5%x 107

* eutectic

YFe-C *

4.26
1155 (1428)
1155 (1428 e)
4,26 [e]

97.9

-140

400

0.49

0.001

0.074
2x10°8

2x 107"
2x107"

ax107
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YFe-Ni

10
1503 (1776)
6



INDEX

Alloy Types 12
Amorphous State 31, 32
Anisotropy of Growth 35, 41

Back-Diffusion 129, 231
Boundary Conditions:
coupling 162,193
far-field (Dirichlet) 162
flux (Robin) 160
satisfaction of 167, 168, 171
symmetry (Neumann) 162
Boundary Layer - see Diffusion
Bridgman Method 4, 7, 81

Capillarity 13, 58, 78, 106, 196, 208, 214
Cast Iron (Fe-C) 5, 12, 36, 41, 98, 110, 112
Casting 2, 4,9, 147

Casting Techniques 4

Cells 69, 81, 87

Chemical Potential 16

Columnar Growth - see Zone
Competitive Growth 68, 113

Contact Angle 27, 182

Continued Fraction 76, 205

Continuous Casting 10

Convection 122, 128, 151

Cooling Curve 23, 67

Cooling Rate 6, 8, 90, 133, 150
Coupled Zone see Zone

Crystallisation Entropy 39, 190

Dendrite:
alloy 67, 211
coarsening 23, 73,214
columnar 9, 73, 211
constrained growth of 66, 211, 213, 214
crystallography 68
ellipsoidal 85
equiaxed 10, 72, 88, 201, 209
growth rate 79, 84, 115, 208
hemispherical tip 75, 76, 78, 83, 203
preferred growth direction of 10, 68, 71
solutal 11, 74, 202
spacing (primary, trunk) 67, 73, 85, 213
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spacing (secondary, arm) 3, 67, 72, 73, 88, 214
thermal 11, 74, 202
tip radius 77, 80, 87, 204, 208
unconstrained growth of - see Zone, equiaxed
Differential Equation:
cylindrical coordinates 144
directional growth 156
Laplace 143, 144
parabolic coordinates 155, 205
rectangular coordinates 143, 144, 154
solutions of 144, 147, 158, 163, 165, 168, 209, 211
spherical coordinates 144, 165
Diffuse Interface - see Interface, roughness
Diffusion:
around dendrite tip 72, 74, 75, 168, 201
boundary layers 51, 74, 154
in liquid 127, 225
in solid 128, 153, 231
Directional Growth - see Solidification
Distribution Coefficient 16, 174

Entropy of Fusion 35, 39
Equiaxed Growth - see Zone and Dendrite
Equilibrium Diagram - see Phase Diagram
Equilibrium Melting Range 16, 134
Error Function 145, 146
Eutectic:
Al-Si 36, 41,99, 110, 112
crystallography 100
diffusion-coupled growth 100, 217
equiaxed 14
faceted/non-faceted 99
Fe-C see Cast Iron
fibrous 99
growth 100, 217
interdendritic 67, 113, 116, 134, 236
interface geometry 101, 104, 112
interface instability 113
irregular 98, 111, 112
lamellar 99
operating range 107
regular 98, 101, 217
spacing 109, 110, 112
Eutectoids 110
Exponential Integral 145, 205
Extremum Growth Criterion 77, 107, 208, 223
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Faceted Interface 35, 38, 39, 188

Fluid Flow - see Convection

Fourier Number 151, 232

Fourier Series 167

Free Dendrite Growth - see Dendrite equiaxed
Freezing Range 131, 134

Gibbs-Thomson Effect - see Capillarity
Glass 1, 31, 32
Grain Refiner - see Inoculants
Graphite:
flake 41, 111, 112
nodular (spherulitic) 41, 98
Gray Cast Iron - see Cast Iron
Growth Defects - see Repeatable Growth Defects

Heat Flux 6, 49, 149, 153
Heat Treatment 236

Heat Transfer Coefficient 151
Homogenisation 236

lce 41
Inoculants 28, 33
Interdendritic:
liquid 67
precipitation 67, 116, 133, 235
segregation 67, 131, 230
Interface:
atomic structure of 34
cellular 69
curvature i3, 15, 24, 103, 178
energy 13,178
instability 48, 58, 69, 192
morphology 15, 48, 68, 87, 104, 112, 116
roughness 34, 38, 190
tension 178
lvantsov Function 76, 206

Lever Rule 129, 230

Liquidus Slope 16

Local Equilibrium 174

Local Solidification Time 67, 90

Mass Balance 122, 230
Mechanical Equilibrium 180

Mixing of Liquid - see Convection
Monocrystal - see Single Crystal
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Morphological Stability - see Stability
Moving Boundary Problem 147
Mushy Zone - see Zone

Needle Crystal 72, 77, 203

Nucleation:
activation energy 25, 33
catalyst - see Inoculants
cluster size 25, 26, 30
contact angle 27, 31, 181
critical nucleus 22, 25, 30
critical radius 25, 26, 30
critical undercooling 31
embryo 22
heterogeneous 27, 181
homogeneous 25
kinetics 184
rate 23, 28, 31, 184
steady-state 29
two-dimensional 37

Numerical Modelling 149

Operating Point 77, 109

Operating Range 107, 111

Optimum Growth Rate 79, 80, 109, 204, 208
Organic Substances 39, 40, 89

Partition Coefficient - see Distribution Coefficient
Peclet Number 82, 105, 204, 208
Perturbations 47, 50, 58, 69, 71, 77, 113, 192
Perturbation Method 47, 58, 170, 192
Phase Diagram 16, 101, 116, 131, 174
Plastic Crystals - see Organic Substances
Polymers 1, 39
Post-Solidification Homogenisation 236
Properties:
metals and alloys 240, 241, 242
succinonitrile 240
Purification 137

Rapid Solidification 31, 116, 174
Recalescence 6

Regular Eutectic - see Eutectic
Repeatable Growth Defects 41, 42
Scheil Equation 129, 232

Segregation:
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Segregation:

homogenisation 236

interdendritic 67, 116, 130, 231

macro- 5, 7, 128

micro- 130, 231
Single Crystal:

dendritic 71, 91
Single-Phase Solidification 91
Solid/Liquid Interface 34, 37, 188
Solidification:

directional 7, 8, 70, 72, 81, 88, 109, 122, 156

equiaxed - see Zone

equilibrium 21, 230

non-equilibrium 21, 231

path 236

peritectic 12, 117

steady-state 52, 126, 163, 204, 217
Solidification Microstructures 5, 10, 14, 68, 73, 91, 93, 112, 113, 116
Solute Pile-Up - see Diffusion Boundary Layers
Stability:

absolute 197, 200

capillarity limit 61

criterion 50, 56, 63, 195

diffusion limit 61, 78, 108

interface 47, 49, 56, 69, 195

limit 199, 200

Mullins-Sekerka analysis 192
Supercooling - see Undercooling
Supersaturation 74, 201

Ternary Systems 236
Transients:
final 126, 228
initial 51, 123, 225
TTT Diagram 32

Unconstrained - see Dendrite
Undercooling:
constitutional 53, 199
curvature 13, 24, 59, 103, 177
Gibbs-Thomson - see curvature
kinetic 49, 59

Viscosity 2
Wavelength of Instability 58, 77, 111, 196
Weighted Residuals 168
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Zone:

chill 68
columnar 9, 50, 68, 73, 132
coupled [14

equiaxed 10, 14, 24, 50, 66, 68, 74, 91, 109
melting 137
mushy 9, 132 149
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